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The tiny neutrino masses and the associated large lepton mixings provide an in-

teresting puzzle and a likely window to the physics beyond the standard model.

This is certainly true if neutrinos are Majorana particles, since then, unlike in the

Dirac case, the standard model is not a complete theory. The Majorana case leads

to lepton number violation manifested through neutrinoless double beta decay and

same sign di-leptons potentially accessible to colliders such as the LHC. This is cov-

ered at length. I discuss in these lectures possible theories of neutrino mass whose

predictions are dictated by their structure only and this points strongly to grand

unification. I cover in detail both SU(5) and SO(10) grand unified theories, and

study the predictions of their minimal versions. The main message I wish to bring

across is a serious hope of probing the origin of neutrino mass in near future, through

the combined effort of high energy collider and low energy lepton number and lepton

flavor violation experiments.
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I. FOREWORD

This review is based on the lectures I gave at the number of schools, in particular at the

International School of Physics “Enrico Fermi” - CLXX Course, Varenna, Italy, June 2008,

and XXIV SERC THEP Main School, Chandigarh, India, March 2009. I am deeply grateful

to the organizers for giving me the opportunity to lecture on the exciting issue of the origin

of neutrino mass, and to the students for their interest and questions.

The theory of neutrino masses and mixings is a rich subject, generating a continuos flow

of papers as you are reading these lecture notes. There is no way I could do justice to this

vast field in such a short time and space an so I chose to concentrate on what my taste
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dictated. In order to be as complete and as pedagogical as possible on the issues to be

discussed, I have completely omitted the popular field of horizontal symmetries which are

used in order to make statements on neutrino masses and mixings, and I apologize to the

workers in the field. My decision is prompted by my lack of belief in this approach where

often one looks for symmetries to get what is needed.

Instead, in searching for the origin of neutrino mass, I have opted here for the theories

whose inner structure leads to neutrino mass and whose predictions depend only on the same

inner structure. Two such examples, the very ones that lead originally to the understanding

of the smallness of neutrino mass through the so-called seesaw mechanism, are provided by

left-right symmetric theories and the SO(10) grand unified theory. One can actually view

SO(10) as a grand-unification of the left-right symmetric theory, the way SU(5) is a natural

grand-unified theory of the Standard Model (SM). The essential physics of neutrino mass

is already present in the LR model, and thus it deserves to be covered in detail. Although

SO(10) does not predict it, the scale of LR symmetry may be accessible to the LHC and

so I devote a lot of attention to its collider phenomenology. These topics provide the core

of my lectures, and I dedicate one of the Appendices (E) to the group theory of SO(2N) in

order to facilitate the reader’s job. Some of the material included in this review is meant

for advanced students and could be skipped in the first reading; these sections are marked

by an asterisk.

I also discuss in detail the SU(5) grand unified theory, although in its minimal form it was

tailor fit for massless neutrinos, just as the minimal standard model. However, a minimal

extension needed to account for neutrino masses and mixings leads to exciting predictions of

new particles and interactions likely to be tested at LHC. Furthermore, an understanding of

SO(10) becomes much easier after one masters a simple, minimal SU(5) theory, which will

always remain as a laboratory of the theory of grand unification and thus a large portion of

these notes is devoted to it, including a short Appendix D.

I have included a number of exercises throughout the text which are important for the

understanding of the material. I encourage the reader to go through them, including those

in the Appendices.

Since my lectures are far from being complete, I suggest here to complement them with

these two pedagogical exposes on the subject of neutrino masses and mixings. At the end

of the lectures, I include some references for further reading.
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1) Mohapatra, Pal [1]. An excellent book, with a detailed analysis of Majorana neutrinos,

left-right symmetry, seesaw mechanism and SO(10) grand unification, which provides the

core of my lectures.

2) Strumia, Vissani review [2]. Highly recommended, especially for the phenomenology

of neutrino masses and mixings. Very well written, continuously updated, concise, clear and

surprisingly complete study of neutrino oscillations and related topics.

Regarding grand unification, I recommend the books by Mohapatra [3] and Ross [4].

Finally, I have tried to do justice in citations, to the field and to my peers, but it is

impossible not to fail due to the lack of time and ignorance. I apologize in advance for any

omission.

My own research on these topics was done in the collaboration with Abdesslam Arhrib,

Charan Aulakh, Borut Bajc, Dilip Ghosh, Tao Han, Gui-Yu Huang, Alessio Maiezza, Ale-

jandra Melfo, Miha Nemevšek, Fabrizio Nesti, Ivica Puljak, Vladimir Tello and Francesco

Vissani, to whom I am deeply grateful for the joy of making physics. I acknowledge with

great pleasure my original work with Rabi Mohapatra on left-right symmetry and the seesaw

mechanism and with Wai-Yee Keung on lepton number violation at colliders.

II. INTRODUCTION

A. Some History

The Standard Model (SM) of electro-weak and strong interactions is a remarkably suc-

cessful theory of all particle forces but gravity. In its minimal version neutrinos are massless,

but the observed tiny neutrino masses are easily accounted for through a new, high-energy

physics; all it requires is to, say, add right-handed neutrinos, the SM singlets. True, one

should find the Higgs particle in order to complete the theory, but to most of us it is only

a question of time, rather likely to happen at LHC. Since it works so well, most of the

attempts in building theories beyond the SM have focused on purely theoretical and even

philosophical questions. One issue that stands out in my opinion is the disparity of three

different forces based on SU(3), SU(2) and U(1) gauge groups. Particularly worrisome is

U(1), since its charge is not quantized, and the miracle of charge quantization in nature is

accounted for by arbitrary of U(1) quantum numbers. Things would be different if we had
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a single (or a product) non-abelian group, such as was the hope in the original proposal by

Schwinger [5] of SU(2) as a unified theory of weak and electromagnetic interactions, long

before the neutral currents were discovered. This guarantees charge quantization and is a

prototype of any unified theory based on a simple gauge group. The neutral gauge boson of

SU(2) was to be identified with the photon and one had

Q = T3 (1)

Thus the charges were automatically, but unfortunately wrongly, quantized (a heroic

attempt to save the theory was made by Georgi and Glashow [6], before the discovery of

neutral currents). This could have been considered as an example of a beautiful theory killed

by the ugly facts of nature. For charge quantization in this theory is a profound and deep

fact: if one breaks SU(2) down to U(1)em as spontaneously as renormalizability requires,

one predicts the existence of magnetic monopoles [7, 8]. This means that all the charges

must be quantized, not just the ones of the observed particles. One is assured that the fact

will persist whatever new particles be discovered.

Four years after Schwinger, Glashow made a simple but important suggestion: he added

the U(1) piece [9]. The rest as we know is history. Well, what was missing was to break the

symmetry through the Higgs mechanism which was to follow six years later [10, 11], and

everything fell in its place. It seemed quite a blow though that one was forced to introduce

the U(1) culprit to get the lepton and quark charges right. Now, in the SM model the

charges are quantized due to anomaly cancellation, but that does not say anything about

the particles not yet discovered, their charges do not have to be quantized. For example,

the vector-like states may have arbitrary real number charges since their anomalies cancel

automatically.

But then came SU(3) as a theory of strong interactions, and a wish to unify both weak

and strong forces in a simple theory, based on a single gauge group. This then, besides

unification, leads to charge quantization automatically, and furthermore the minimal theory

based on SU(5) gauge group [12], also includes U(1) for free. There are two generic beautiful

predictions of grand unification: proton decay and magnetic monopoles, the former due to

the unification of quarks and leptons and the latter due to in-built quantization of electric

charge. Whereas Dirac predicted charge quantization if magnetic monopoles exist [13], grand

unification predicts the existence of monopoles. Both proton decay and magnetic monopoles
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were searched for desperately, alas, with no success. Furthermore, the minimal grand unified

theory of both matter and interactions based on SO(10) [14] gauge group predicts massive

neutrinos, and connects neutrino masses and mixings with the ones of the quarks.

The crucial characteristic of SO(10) regarding neutrino mass is the automatic, gauged,

left-right symmetry. It suggests that the purely chiral, V-A property of weak interactions,

is an accidental low energy fact, to be eventually restored at high energies. The idea of

LR symmetry is an old one, as old as the very idea of the breakdown of parity in weak

interactions [15]. At the end of their landmark paper, Lee and Yang speculate of LR

symmetry restoration through the existence of mirror fermions. Another possibility is of-

fered by LR symmetric gauge theories [16–19] discussed at length in these lectures. It

is these theories that led originally to neutrino mass and the well known seesaw mecha-

nism [23] [24] [25] [26] [27].

Today we know for fact that at least two neutrinos are massive and by analogy with

quarks we need the leptonic mixing matrix. For the phenomenology of neutrino masses and

mixings, see e.g. [2].

We start by reviewing what the Standard Model (SM) says about neutrino masses and

mixings.

B. Review of the Standard Model

The minimal Standard Model (MSM) is an SU(3)×SU(2)×U(1) gauge theory with the

following fermionic assignment [9]

qL ≡

 u

d

 ; (uc)L, (d
c)L

`L ≡

 ν

e

 ; (ec)L (2)

where we have omitted the color index for quarks and we work here with left-handed anti

fermions instead of right-handed fermions (see Appendix A)

(ψC)L ≡ Cψ̄TR (3)
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Actually, we will sometimes work with right-handed fermions too (as in the section IV

on LR symmetry), and it is important to be familiar and at ease with both notations.

The maximal parity violation in the usual charged weak interactions is characterized by

the maximal asymmetry between left and right: only left-handed fermions interact with

W± gauge bosons. On top of that, the quark-lepton symmetry is broken by the minimality

assumption: no right-handed neutrinos. Hence a clear prediction: neutrinos are massless. In

order to see that, recall that fermionic masses in the MSM stem from the Yukawa interactions

with a Higgs doublet Φ

LY = yu q
T
LCiσ2ΦucL + yd q

T
LCΦ∗dcL + yl l

T
LCΦ∗ecL + h.c. (4)

where the generation index is suppressed for simplicity. An equivalent expression involves

right-handed particles instead of left-handed anti-particles

LY = yu q̄Liσ2Φ∗uR + yd q̄LΦdR + yl l̄LΦeR + h.c. (5)

From the charge formula

Q = T3 + Y/2 (6)

The usual charges are reproduced with

Yq =
1

3
, Y` = −1, YuR =

4

3
, YdR = −2

3
, YeR = −2, YΦ = 1 (7)

Notice the physical interpretation for the hypercharge of the left-handed particles

YL = B − L (8)

whereas YR has no physical interpretation and needs to be memorized.

The B − L symmetry of the MSM is selected out: it is an anomaly free combination

of accidental global symmetries B and L. In other words, B − L can be gauged. We

will come back often to this important and suggestive fact. The minimality of (2), the

broken symmetry between quarks and leptons is thus responsible for the only failure of this,

otherwise extremely successful, theory.

As it is, the MSM must be augmented in order to account for neutrino mass. If you

insist, though, on the MSM degrees of freedom in (2), the Yukawa interactions that could

lead to neutrino mass must clearly be higher dimensional [28]
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LY (d = 5) = yν
(`TLiσ2Φ)C(ΦT iσ2`L)

M
(9)

where the new scale M signifies some new physics.

Exercise: Show that there are only three possible d = 5, SU(2)×U(1) invariant operators

bilinear in the lepton doublet. Show then that they are all equivalent.

When the Higgs doublet gets a nonvanishing vacuum expectation value (vev)

〈Φ〉 =

 0

v

 (10)

the charged fermions get the usual Dirac mass

mf f̄ f ≡ mf (f̄L fR + f̄R fL) (11)

with mf = yfv. In the same manner, from (9) neutrino gets a Majorana mass [29]

mν ν
T
LCνL (12)

with

mν = yν
v2

M
(13)

If M � v, neutrinos are automatically lighter than the charged fermions; however if

M ' v (or even M � v), small mν may result from yν � 1. Since this is an effective

theory, we can say nothing about mν . In short, the absence of new light degrees of freedom,

indicates Majorana neutrino masses and the violation of the lepton number at the new scale

M .

From (9) and (12), one has ∆L = 2 which allows for the neutrinoless double beta decay

ββ0ν [30] [31].

n+ n→ p+ p+ e+ e (14)

It is often argued that ββ0ν probes mM , however, the situation is more complex. Namely,

the MSM with neutrino Majorana mass is not a complete theory; it must be completed
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FIG. 1: Neutrinoless double β decay through a Majorana mass mM which breaks a neutrino

fermionic line

through a d=5 operator (9) and a new physics at M . We will see that the predictions for

ββ0ν depend on the completion, to which we now turn to.

The effective operator (9) is useful in discussing the qualitative nature of neutrino mass,

but if we wish to probe the origin of neutrino masses we need a renormalizable theory beyond

the MSM. There are infinitely many different possibilities of completing the MSM which all

lead to the d=5 operator upon integrating out the new physics, so we cannot a priori say

anything about the physics behind it. The situation simplifies if one assumes adding only

one type of new particles in which case there are only three different ways of completing

MSM. These are three different seesaw mechanisms. A word of caution is in order. The

assumption of only one new type of particles is rather simplifying and should not be taken

too seriously. A new theory beyond the standard model (BSM) may turn out much more

complex, and this naive picture may turn out wrong. However, in the suggestive, simple

extensions of the SM one ends up precisely with these contributions; for this reason I decided

to keep this logic of presentation. By no means should one imagine that this is a full story

though or that a full theory will not have a variety of these seesaws.

III. NEUTRINO MASS: THE SEESAW MECHANISM

We discuss here different realizations of the seesaw mechanism, in order of their popularity

which also coincides with the historic development. The idea as we said is a renormalizable

completion of the MSM that can lead to small neutrino masses.
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A. Right-handed neutrinos: Type I seesaw

The most suggestive completion of the MSM is the introduction of νR (per family of

fermions), a gauge singlet chiral fermion. This is a right handed neutrino, whose existence

is appealing from the structural quark - lepton symmetry. A new renormalizable Yukawa

coupling (written here for one generation case only) then follows

∆L = yD ¯̀
Lσ2Φ∗νR +

MR

2
νTRCνR + h.c. (15)

Introduce

ν ≡ νL + Cν̄TL

N ≡ νR + Cν̄TR (16)

which gives the mass matrix for ν and N (see Appendix III) 0 mD

mT
D MR

 (17)

If MR � mD, neutrinos would be predominantly Dirac particles. For MR ' mD, we

have a messy combination of Majorana and Dirac, whereas for mD �MR we would have a

predominantly Majorana case [this case is rather interesting, since the gauge invariant scale

MR is expected to be above MW : MR > MW ]. In this case the approximate eigenstates are

N with mass MN ≡MR and ν with a tiny mass

Mν = −mT
D

1

MN

mD (18)

This is the original seesaw formula [23][25] [27] [24], today called Type I. As we know

from (9), with heavy νR, neutrino mass must be of the type (12), confirmed here.

Exercise: Prove explicitly (17) in the case of two generations. Hint: work with mD

diagonal.

Is is clear from (17) that the number of νR’s determines the number of massive light

neutrinos: for each νR, only one νL gets a mass. In other words, we need at least two νR’s in

order to account for both solar and atmospheric neutrino mass differences. It is suggestive,
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FIG. 2: Diagrammatic representation of the Type I seesaw

though, to have a νR per family, in which case an accidental anomaly free global symmetry

of the MSM can be gauged. A neutrino per generation is needed to cancel U(1)3
B−L anomaly.

The diagrammatic representation of the seesaw in Fig.2 may be even more clear; it is

easy to see that the heavy neutrino propagator gives the seesaw result.

B. Y = 2, SU(2)L triplet Higgs: Type II seesaw

Instead of νR, a Y = 2 triplet ∆L ≡ ~∆L · ~σ can play the same role [32] [33] [34]. From

the new Yukawas

∆L(∆) = yij∆`
T
i Cσ2∆L`j + h.c. (19)

where i, j = 1, ...N counts the generations, neutrinos get a mass when ∆L gets a vev

Mν = y∆〈∆〉 (20)

The vev 〈∆〉 results form the cubic scalar interaction

∆V = µΦTσ2∆∗LΦ +M2
∆Tr∆

†
L∆L + ... (21)

with

〈∆〉 ' µv2

M2
∆

(22)

where one expects µ of order M∆. If M∆ � v, neutrinos are naturally light. Notice that

(20) and (22) reproduce again the formula (12) as it must be: for large scales of new physics,

neutrino mass must come from d = 5 operator in (9).

Again, the diagrammatic representation may be even more clear, see Fig. 3.
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Y

FIG. 3: Diagrammatic representation of the Type II seesaw

C. Y = 0, SU(2)L triplet fermion: Type III seesaw

The Yukawa interaction in (15) for new singlet fermions carries on straightforwardly to

SU(2) triplets too, written now in the Majorana notation (where for simplicity the generation

index is suppressed and also an index counting the number of triplet - recall that at least

two are needed in order to provide two massive light neutrinos)

∆L(TF ) = yT `
TCσ2~σ · ~TFΦ +MT

~T TF C
~TF (23)

In exactly the same manner as before in Type I, one gets a Type III seesaw [35] for MT � v

Mν = −yTT
1

MT

yTv
2 (24)

Again, as in the Type I case, one would need at least two such triplets to account for the

solar and atmospheric neutrino oscillations (or a triplet and a singlet). And, as before, (24)

simply reproduces (12) for large MT , and SU(2)× U(1) symmetry dictates.

Under the assumption of single type of new particles added to the SM, these three types

of seesaw exhaust all the possibilities [36] of reproducing (9) and (12).

Exercise: Show that the three possible different operators of the type (9) correspond to

the three different types of seesaw.

Since (9) and (12) describe effectively neutrino Majorana masses in the MSM, the question

is whether we gain anything by going to the renormalizable seesaw scenarios. If the new

scales MR,M∆ and MT are huge and not accessible to experiment, then arguably 17), or

(20) and (22 , or (24), are equivalent to the (9) or (12). In a sense, they are only a change

of language, but not a useful language. We have traded the couplings yν between physical,
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observable particles, to the unknown yD (or y∆ or yT ) couplings and the unknown masses

of the heavy particles that we integrate out.

The issue, in any case, is not so much to explain the smallness of neutrino mass, but to

relate it to some other physical phenomenon. After all, small fermion masses are controlled

by small Yukawa couplings.

This is reminiscent of the Fermi theory of weak interactions. At low energies E � MW ,

the concept of a massive gauge boson W was not useful and for many years one kept working

on the Fermi theory instead. For otherwise, one would be trading the interactions between

light physical states for the unknown coupling with W and unknown MW .

There are two cases when one is better off talking of W , though

1. when one can reach the energy E 'MW and thus make W experimentally accessible

2. even when E � MW , but one has a dynamical theory of W interactions as in the

MSM. The SU(2) × U(1) gauge symmetry of MSM made clear predictions at low

energies by correlating charged and neutral current processes.

Ideally, we would like both 1 and 2. By complete analogy, we need then either MR, M∆ or

MT close to MW in order to be accessible at LHC, or we need a theory of new interactions.

The nice example for the latter is Grand Unification: through q− ` symmetry it in principle

correlates quark and lepton masses and mixings.

A particularly appealing GUT is SO(10), since it unifies a family of fermions and has

L−R symmetry as a finite gauge transformation in the form of Dirac’s charge conjugation.

I will be discussing it at length later; for the moment suffice it to say that it predicts both

Type I and Type II seesaw, but in minimal predictive versions their scale is very large,

much above MW – and hopeless to detect directly. The type III seesaw, though, is predicted

naturally in a minimal realistic extension of the original SU(5) grand unified theory. This

will be covered too towards the end of the course.

In summary, the main message of this chapter should be that the Majorana neutrino

mass is rather suggestive from the theoretical point of view. As such, it provides a window

to new physics at scale M of (9). The crucial prediction of this picture is the ∆L = 2 lepton

number violation in processes such as ββ0ν. However, ββ0ν depends in general on the new

physics at scale M , and it is desirable to have a direct probe of lepton number violation.
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In 1983, Keung and I [37]suggested ∆L = 2 production of same sign di-leptons at colliders,

accompanied by jets, as a direct probe of the origin of neutrino mass. We will discuss lepton

number violation at length in Section VIII.

What happens if the neutrino has a pure Dirac mass? In this case, mν = yDv and the

smallness of mν simply requires the smallness of yD. The smallness of mν remains a puzzle

controlled by small yD, as much as the smallness of me is controlled by a small electron

Yukawa coupling. The MSM with Dirac couplings is a complete theory and needs no theory

beyond it. The diversity of fermion masses and mixings encourages though many workers

in the field to look for flavor symmetries at high energies. The danger here is to be caught

in semantics rather in physics, for one often trades the known masses and mixings of the

physical states for the unmeasurable properties of the new heavy particles and/or textures

of mass matrices that cannot be probed. This is a generic problem of large scale theories

and in order to verify them we would need to correlate the neutrino masses and mixings

with some new physics. A nice example is proton decay in GUTs, to which we will come

later.

IV. LEFT-RIGHT SYMMETRY

This Section is devoted to the left-right symmetric extension of the standard model and

the issue of the origin of the breaking of parity. This theory played an important historic

role in leading automatically to nonzero neutrino masses and the seesaw mechanism. There

are two different possible left-right symmetries: parity and charge conjugation. The latter

is the finite gauge transformation in SO(10), an is thus rather suggestive. Still, parity is

normally identified with LR symmetry, so I discuss next parity. The write-up here is rather

simple and pedagogical, without too many technicalities.

A. Parity as Left-Right symmetry

Parity is the fundamental symmetry between left and right and its breaking, I believe,

should be understood. In the standard model P is broken explicitly and clearly, in order to

break P spontaneously we must enlarge the gauge group. The minimal model is based on

the gauge group [16–19].
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GLR = SU(2)L × SU(2)R × U(1)B−L with the quarks and leptons completely symmetric

under L↔ R

QL =

 u

d


L

P←→ QR =

 u

d


R

`L =

 ν

e


L

P←→ `R =

 ν

e


R

(25)

Notice that the requirement of LR symmetry leads to the existence of the right-handed

neutrino and now the neutrino mass becomes a dynamical issue, related to the pattern of

symmetry breaking. In the Standard Model, where νR is absent, mν = 0; here instead we

shall need to explain why neutrinos are so much lighter than the corresponding charged

leptons.

In this theory, the formula (6) for the electromagnetic charge becomes

Qem = T3L + T3R +
B − L

2
(26)

This is in sharp contrast with the Standard Model, where the hypercharge Y was com-

pletely devoid of any physical meaning. So LR symmetry is deeply connected with B-L

symmetry; the existence of right-handed neutrinos implied by LR symmetry is necessary in

order to cancel anomalies when gauging B-L. Namely, the B-L symmetry is a global anomaly

free symmetry of the SM, but without νR the gauged version would have (B−L)3 anomaly.

Our primary task is to break LR symmetry, i.e. to account for the fact that MWR
�MWL

,

WR and WL denoting right-handed and left-handed gauge bosons respectively. In order to

do so we need a set of left-handed and right-handed Higgs scalars whose quantum numbers

we will specify later. Imagine for the moment two scalars ϕL and ϕR with

ϕL
P←→ ϕR (27)

Assume no terms linear in the fields (since ϕL and ϕR should carry quantum numbers

under SU(2)L and SU(2)R ) we can write down the left-right symmetric potential

V = −µ
2

2
(ϕ2

L + ϕ2
R) +

λ

4
(ϕ4

L + ϕ4
R) +

λ′

2
ϕ2
L ϕ

2
R (28)

where λ > 0 in order for V to be bounded from below, and we choose µ2 > 0 in order to

achieve symmetry breaking in the usual manner. We rewrite the potential as
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V = −µ
2

2
(ϕ2

L + ϕ2
R) +

λ

4
(ϕ2

L + ϕ2
R)2 +

λ′ − λ
2

ϕ2
L ϕ

2
R (29)

which tells us that the pattern of symmetry breaking depends crucially on the sign of

λ′ − λ, since the first two terms do not depend on the direction of symmetry breaking (of

course µ2 > 0 guarantees that < ϕL >=< ϕR >= 0 is a maximum and not a minimum of

the potential).

Exercise: Show that if

• λ′ − λ > 0, in order to minimize V we have either < ϕL >= 0, < ϕR >6= 0, or vice

versa.

• λ′−λ < 0, we need < ϕL >6= 0 6=< ϕR > and LR symmetry implies < ϕL >=< ϕR >.

We choose the former, which implies that P is broken in nature [18, 19].

Before discussing neutrino mass in this theory, a comment is called for regarding the

notorious domain wall problem, a result of the spontaneous symmetry breaking of discrete

symmetries. A possible way out [20] is a non-restoration of symmetry at high temperature

[21], or a tiny breaking of these symmetries by say Planck scale suppressed effects [22].

B. Left-Right symmetry and massive neutrinos

What fields should we choose for the role of ϕL and ϕR? From the neutrino mass point

of view, the ideal candidates should be triplets [23] [24], i.e.

∆L(3̄L , 1R , 2) ; ∆R(1̄L , 3R , 2) (30)

where the quantum numbers denote SU(2)L , SU(2)R and B−L transformation proper-

ties. Simply speaking, ∆L and ∆R are SU(2)L and SU(2)R triplets, respectively, with B−L
numbers equal to two.

Writing ∆L,R = ∆i
L,Rτi/2 (τi being the Pauli matrices) as is usual for the adjoint repre-

sentations, we find Yukawa couplings

L∆ =
1

2
(`TL C iτ2 Y∆L

∆L `L + L→ R) + h.c. (31)
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To check the invariance of (31) under the Lorentz group and the gauge symmetry

SU(2)L × SU(2)R × U(1)B−L, recall

• that ψTLCψL is a Lorentz invariant quantity for a chiral Weyl spinor ψL (and similarly

for ψR).

• under the gauge symmetry SU(2)L

`L −→ UL`L , ∆L −→ UL∆LU †L
UTL (iτ2) = (iτ2)U †L (32)

and similarly for SU(2)R

• the B-L number of the ∆L,R fields is two.

This proves the invariance of (31) under all the relevant symmetries. Now, from their

definition, the fields ∆L,R have the following decomposition under the charge eigenstates

∆L,R =

 ∆+/
√

2 ∆++

∆0 −∆+/
√

2


L,R

(33)

where we use the fact that Tr∆L,R = 0 and the charge is computed from Q = T3L +

T3R + (B − L)/2.

Notice an interesting consequence of doubly charged physical Higgs scalars in this theory.

From the general analysis of the spontaneous LR symmetry breaking, we know that for a

range of parameters of the potential the minimum of the theory can be chosen as

〈∆L〉 = 0 , 〈∆R〉 =

 0 0

vR 0

 (34)

From (31), we the obtain the mass for the right-handed neutrino νR

Lm = h∆ vR (νTR C νR + ν†R C
† ν∗R) (35)

Thus the right-handed neutrino gets a large mass MR = h∆vR, which corresponds to the

scale of breaking of parity. At the same time, the original gauge symmetry is broken down

to the Standard Model one

SU(2)L × SU(2)R × U(1)B−L
<∆R>−→ SU(2)L × U(1)Y (36)
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This can be checked by computing the gauge boson mass matrix. By defining the right-

handed charged gauge boson

W±
R =

A1
R ∓ iA2

R√
2

(37)

we get

M2
WR

= g2
R v

2
R, (38)

M2
ZR

= 2(g2 + g2
B−L) v2

R =
2g2

g2 − g2
Y

M2
WR

= 3M2
WR

, (39)

where

ZR =
gB−LA

3
R + gRAB−L√
g2 + g2

B−L

(40)

is the new massive neutral gauge field, and gR and gB−L gauge couplings correspond to

SU(2)R and (B − L)/2, respectively (and where we used the relation g−2
Y = g−2 + g−2

B−L).

This gives roughly MZR ' 1.7MWR
.

To complete the theory, one needs a Higgs bi-doublet Φ ∈ (2L, 2R, 0) which contains the

SM Higgs, so that one can give masses to quarks and leptons. At the next stage of symmetry

breaking, the neutral components of Φ develop a VEV and break the SM symmetry down

to U(1)em

〈Φ〉 =

 v1 0

0 v2e
iα

 (41)

where M2
W = g2v2 ≡ g2(v2

1 + v2
2)

In the process we get the Dirac neutrino mass between νL and νR and in turn we end up

with the type I seesaw mechanism for light neutrino masses.

1. Type I seesaw

From the Dirac Yukawas

L = `L(YΦ Φ + ỸΦ Φ̃)`R + h.c (42)

(where Φ̃ ≡ σ2Φ∗σ2), after the symmetry breaking the neutrino Dirac and charge lepton

mass matrices are

MD = v (YΦ c+ ỸΦ s e−iα),

M` = v (YΦ s eiα + ỸΦ c) , (43)
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where s = v2/v, c = v1/v.

The neutrino mass terms become

mD`L`R +MR`
T
RC`R + h.c. (44)

and the neutrino mass matrix takes clearly the seesaw form.

The Majorana right and left neutrino mass matrices are given by

MνR = vR Y∆R
,

MνL = vL Y∆L
−MT

D

1

MνR

MD ,
(45)

where we work in the usual seesaw picture with MνR �MD, vL � vR.

The important point here is that the mass of νR is determined by the scale of parity

breaking and the smallness of the neutrino mass is a reflection of the predominant V-A

structure of the weak interaction and provides a probe of parity restoration at high energies

E > MWR
.

2. Type II seesaw

The gauge symmetry of the Left-Right model allows also for the following term in the

potential that we have ignored before for simplicity

∆V = α∆†LΦ∆RΦ† (46)

which implies that 〈∆L〉 cannot vanish [34].

Exercise: Show that

〈∆L〉 ' α
M2

W 〈∆R〉
M∆L

' α
M2

W

MR

(47)

which leads to type II seesaw.

The predictions for neutrino mass depend crucially on MWR
, but the LR symmetric model

by itself cannot give us its value. This is cured in SO(10) grand unified theory, where we

will see that this scale tends to be very large, far above the TeV energy scale of LHC. This

is unfortunate.
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C. Charge conjugation as LR symmetry

Since charge conjugation (see Appendix A)

(ψC)L ≡ Cψ̄TR (48)

is also a transformation between left and right, one can as well use C as a LR symmetry

of this theory. In the limit of CP invariance, these symmetries are equivalent; the difference

lies only in the tiny breaking of CP. The above discussion goes almost unchanged and we

leave it as an exercise for a reader to go through.

Exercise: Rewrite the above left-right symmetric theory, both gauge and Yukawa cou-

plings with LR symmetry as C instead of P.

We will see that in SO(10) this symmetry introduced here ad-hoc, is an automatic finite

gauge transformation.

Under the two choices of LR symmetry, the Yukawa mass matrices satisfy the following

constraints

P :

 YΦ = Y †Φ

Y∆L,R
= Y∆R,L

,
C :

 YΦ = Y T
Φ

Y∆L,R
= Y ∗∆R,L

.
(49)

As usual one diagonalizes the mass matrices

M` = U`Lm` U
†
`R, MνL = U∗νLmν U

†
νL, MνR = U∗νRmN U

†
νR. (50)

where ml, mν and mN are diagonal with positive eigenvalues. Furthermore, using (38) and

the first equation in (45), we can rewrite the triplet Yukawa couplings

Y∆R
=

g

MWR

U∗νRmNU
†
νR, (51)

and Y∆L
is determined via (49), depending on the preferred choice for the discrete left-right

symmetry.

In the case of C, the charged lepton mass matrices are symmetric, therefore the left and

right mixing matrices of charged leptons are related

U`L = U∗`R. (52)
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The net result are flavour changing charged weak interactions

LCC =
g√
2

W µ
L

(
ν̄e ν̄µ ν̄τ

)
L
V †Lγµ


e

µ

τ


L

+W µ
R

(
ν̄e ν̄µ ν̄τ

)
R
V †Rγµ


e

µ

τ


R

+ h.c. , (53)

where VL = U †`LUνL is the left handed leptonic mixing matrix given in the canonical form

VL = V PMNS
L Kν =


c13c12 c13s12 s13

−s12c23e
iδ − c12s13s23 c12c23e

iδ − s12s13s23 c13s23

s12s23e
iδ − c12s13c23 −c12s23e

iδ − s12s13c23 c13c23

 Kν , (54)

where Kν = diag(eiφ1 , eiφ2 , 1) contains the two Majorana phases and VR = U †`RUνR is its

right-handed analogue. In principle it has different angles and three extra phases and can

be cast in the form VR = KeV
PMNS
R KN , where Ke = diag(eiφe , eiφµ , eiφτ ). Since in general

there is no connection between MνL and MνR , the left and right leptonic mixing matrices

are not related at all. In order to make any statement regarding the presence of new physics

in low energy phenomena such as LFV and 0ν2β, we need to extract VR, ideally from the

LHC.

Apart from the above charged current gauge interactions, the other central role is played

by doubly charged scalars. Using (51) and (52) it is clear that their interactions are governed

by the same combination that enters in the right-handed gauge current mixings, again for

the case of C
L∆++ =

1

2
eTR C Y ∆++

R eR +
1

2
eTL C Y

∗∆++
L eL (55)

where

Y =
g

MWR

V ∗RmNV
†
R. (56)

and e stands generically for all the charged lepton flavors.

In order to make phenomenological predictions in this theory, we need to know VR as we

stressed repeatedly. This will hopefully be provided by the LHC, once WR is discovered.

Meanwhile, in order to exemplify the power of the knowledge of VR we take a possibility of

type II seesaw. When the LR symmetry is chosen to be C, the theory is characterized by

the proportionality of the two neutrino mass matrices

MνR/〈∆R〉 = M∗
νL
/〈∆L〉∗. (57)
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An immediate important consequence is that the mass spectra are proportional to each other

mN ∝ mν , (58)

where mN stands for the masses of the three heavy right-handed neutrinos Ni and mν for

those of the three light left-handed neutrinos νi.

Since the charged fermion mass matrices are symmetric (due to the symmetry under C),
one readily obtains a connection between the right-handed and the left-handed (PMNS)

leptonic mixings matrices

VR = KeV
∗
L (59)

We wish to pause here and make sure that our message is carried through. The above

relation is valid only for the case of the type II seesaw, and it cannot be taken as a prediction

of the theory. It should be viewed as an example of what LHC can achieve for us if WR is

found and one is able to measure VR, for the rest will follow as described below.

The discussion of the probe of LR symmetry and the potential discovery of WR is given

in the Section VIII. The crucial feature of the observability of WR is a Majorana nature

of the associated right-handed neutrinos which leads to lepton number violation (LNV),

and the resulting signature are same sign di-lepton pairs. We will see that LHC offers a

spectacular possibility of observing both the restoration of LR symmetry and a Majorana

origin of neutrino masses through direct LNV. It turns out that lepton flavor violation (LFV)

plays an important role in these issues and we discuss it here briefly.

D. The scales of the theory

Before turning our attention to grand unification, we should address the question of

the experimental situation regarding the LR scale. As we saw above, the scale of parity

breaking is related to the mass of the right-handed charged gauge bosons W±
R , so we can

better speak of MWR
. The predominant V-A nature of the weak interactions puts a lower

limit on MWR
, but the limit depends on the details of the model. In general the left and

right mixings between quarks (and leptons too) are not correlated and MWR
can be quite

low. In the minimal model, these mixings are indeed correlated due to the Yukawa couplings

being either Hermitian or symmetric depending whether one use P or C for LR symmetry,

respectively.
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In either case there is a lower limit on MWR
from KL −KS and B − B̄ mass differences

[38]

MWR
& 2.5TeV. (60)

There have been recent claims of MWR
& 4TeV [39] (or even MWR

& 10TeV [40]). These

bounds arrive from the CP-violating observables they have to do with a way one makes

strong CP violation small. They are not generic as shown in [38]. If C is used instead of P,

these bounds simply go away [38].

V. * LEPTON FLAVOR VIOLATION

Lepton flavor violation in LR symmetric theories has been studied in the past [41, 42].

What is new in [103] is the connection with LHC and specially the quantitative implications

for the neutrinoless double beta decay to be discussed in the following section.

As before, we keep working with C as the LR symmetry. When necessary to specify the

the right handed leptonic mixing angles we adhere to type II prevalence.

Among the plethora of lepton flavor violating processes, three stand out: µ → eeē,

µ→ eγ and µ→ e conversion in nuclei. The first is mediated at the tree level by the doubly

charged ∆++
L,R and will play a dominant role in most of the parameter space. The other two

are loop suppressed and mediated by both the gauge and scalar bosons of the theory, and

they play an important role, when there are cancellations in the former process. Due to the

logarithmic enhancement, not expected at first glance, µ→ e conversion tends to dominate

over µ→ eγ in a large portion of parameter space.

Although they are by and large less important, we also use LFV τ decays in narrow corners

of the parameter space where all the other constraints are eluded. The flavor violating meson

decays, on the other hand, turn out to be insignificant.

A. Tree level li → ljlkll processes

We start first with the three body decay LFV induced by the doubly charged bosons ∆++
L

and ∆++
R . It turns out that µ → 3e and τ → 3µ provide the only relevant constraints and
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so we give the corresponding branching ratio[109]

BR(li → 3lj) ≡
Γ(li → 3lj)

Γ(li → ljνν)
=
|YijY ∗jj|2
64G2

F

(
1

M4
∆L

+
1

M4
∆R

)
(61)

where the Yukawa coupling of ∆++
LR is defined in (55). Using (56) the above formula can be

rewritten in a more convenient form

BR(li → 3lj) =
1

2

(
MW

MWR

)4 ∣∣VRmNV
T
R

∣∣2
ij

∣∣VRmNV
T
R

∣∣2
jj

(
1

M4
∆L

+
1

M4
∆R

)
. (62)

The deep connection between LHC and LFV that we have been stressing is made explicit in

the above formula. The knowledge of VR and the relevant masses would determine completely

the above branching ratios. Unfortunately, without LHC this is impossible. Since we are

impatient we focus on the type II ansatz described above. Using (??) we can then write

BR(li → 3lj) =
1

2

(
MW

MWR

)4 ∣∣∣∣VLmN

M∆

V T
L

∣∣∣∣2
ij

∣∣∣∣VLmN

M∆

V T
L

∣∣∣∣2
jj

, (63)

where 1/M2
∆ ≡ 1/M2

∆L
+1/M2

∆R
. The best measured LFV three body decay is by far µ→ 3e

with BR(µ→ 3e) < 1.0× 10−12 [43].

Due to the strong dependence on MWR
and M∆ when these masses become larger than

about 100 TeV, these processes become negligible. We are, of course, interested in LHC

accessible energies with MWR
' 2.5 − 5 TeV. An immediate rough consequence seems to

follow: M∆ > 10MN . However, strong dependence on angles and phases can bring this ratio

down to about one in the case of hierarchical neutrino spectra. For degenerate neutrinos

unfortunately not much can be said. We quantify this below.

B. Loop induced li → ljγ

Next, we turn our attention to the processes such as µ → eγ, τ → µγ, τ → eγ. The

general formulae for the relevant decay rates can be found in [41]. As in the rest of the

paper we are interested in the energy region accessible to LHC, i.e. in sufficiently light

doubly charged scalars with mass well below TeV. In practice, this means we neglect the

∆+
L contribution (∆+

R gets eaten by the W+
R ), which is at least 16 times smaller for similar

masses of ∆+
L and either of ∆++

L,R. In this case the dominant contribution is given by

BR(li → ljγ) =
α

48πG2
F

∣∣Y Y †∣∣2
ij

(
1

M4
∆L

+
1

M4
∆R

)
. (64)
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As before, it is convenient to rewrite this in terms of the right-handed neutrino masses and

mixing

BR(li → ljγ) =
2

3

α

π

(
MW

MWR

)4 ∣∣∣∣VLm2
N

M2
∆

V †L

∣∣∣∣2
ij

. (65)

At a first glance it seems that this process is of no use being both loop suppressed and

experimentally less well constrained than the three body decay discussed above. Notice

though a different flavor dependence which can become important in the case of cancelations

in the `→ 3` process.

C. Loop induced µ− e conversion in nuclei

Finally, µ− e conversion in nuclei is a process of particular interest. It is loop suppressed

as li → ljγ but the experimental limit is set at the same level as µ→ 3e. Furthermore, the

photon exchange has a logarithmic enhancement [44], which implies that for M∆ < MWR

the dominant contribution comes from ∆++
L and ∆++

R and takes the following form [41]

BR(µ− e) =
8G2

Fα
2

9π2

(V (p))2

Γcapt.

∣∣Y Y †∣∣2
µe

[
1

M4
∆L

(
log

M2
∆L

m2
µ

)2

+
1

M4
∆R

(
log

M2
∆R

m2
µ

)2
]
. (66)

Since the two logarithms are roughly the same, this can be rewritten as

BR(µ− e) =
256G4

Fα
2

9π2

(V (p))2

Γcapt.

(
MW

MWR

)4 ∣∣∣∣VLm2
N

M2
∆

V †L

∣∣∣∣2
µe

(
log

M2
∆

m2
µ

)2

. (67)

Notice that the flavor structure is the same as that of µ → eγ. For this reason, at present

status of experimental limits, it will play a more relevant role.

The LFV transition rates become negligible when the masses of MWR
and m∆ become

larger than about 100 TeV. We are interested in LHC accessible energies, in which case the

smallness of the LFV is governed by the ratio mN/m∆, in addition to mixing angles. In

this sense LFV is rather different from LNV which in oder to be observable needs roughly

a TeV scale. It is perfectly possible that the LR scale, much above the LHC reach, leads to

observable LFV processes; however, it would be basically impossible to verify that. This is

why the LHC scale new physics becomes so important, for it would relate all these different

processes. The reason that it is still possible not to be in conflict with the LFV experimental

limits, even with the TeV scale LR symmetry, is of course the fact that the mixings and

phases, together the masses of N’s can control the size of the relevant rates. The crucial



27

lightest neutrino mass in eV

absolute bound from LFV

always allowed by LFV

Normal Hierarchy
MWR = 3.5TeV

m
/m

N
∆

10−4 0.001 0.01 0.1 1
0.01

0.05

0.1

0.5

1.0

5.0

10�4 0.001 0.01 0.1 1
0.01

0.05

0.1

0.5

1.

5.

1

lightest neutrino mass in eV

absolute bound from LFV

always allowed by LFV

Inverted Hierarchy
MWR = 3.5TeV

m
/m

N
∆

10−4 0.001 0.01 0.1 1
0.01

0.05

0.1

0.5

1.0

5.0

10�4 0.001 0.01 0.1 1
0.01

0.05

0.1

0.5

1.

5.

1

FIG. 4: Combined bounds on mheaviest
N /m∆ from LFV, taken from [103]. The dots show the (most

probable) upper bounds resulting for different mixing angles, Dirac and Majorana phases (varied

respectively in the intervals {θ12, θ23, θ13} = {31-39◦, 37-53◦, 0-13◦} and {0, 2π}). The dark line is

the absolute upper bound. The plot scales as MWR/3.5 TeV.

dimensionless parameter is mheaviest
N /m∆, and in [103] we have plotted the upper bound

on this quantity, varying the mixing angles and phases (LFV plots also take into account

µ → e conversion in Au nuclei [45], µ → eγ [46] and rare τ decays such as τ → 3µ,

etc. [47]) (see fig. 4, taken from [103]). An immediate rough consequence seems to follow:

mheaviest
N /m∆ < 0.1 in most of the parameter space. However, the strong dependence on

angles and phases allows this mass ratio up to about one in the case of hierarchical neutrino

spectra. This serves as an additional test at colliders of type II seesaw used here. For

degenerate neutrinos, unfortunately, no strict constraint arises: see again Fig. 4.

Some important comments are in order. First, the case of inverse hierarchy. If θ13 ≥ 2◦, a

bound M∆ ≥ 2mN arrises from muon decay alone. Only if θ13 is smaller, cancellations in the

muon channel may occur and τ decays are called for to close the gap and bound M∆ ≥ mN .

In the case of normal hierarchy, one has generically M∆ ≥ mN , except for cancellations in a

very narrow region. The largest region 0 < θ13 < 0.5◦ occurs for θ23 = 37◦ (the lower end of

99% CL). This tiny region shrinks further as θ23 approaches its central value.

Before closing this section, we wish to remark on an exciting possibility of planned new

experiments [48], [49] on µ→ e conversion, that could improve the sensibility by four to six

orders in magnitude. If a signal is observed, one can in principle measure the CP violation

phases of VR [50] that enter into the other LFV processes, and especially into the neutrinoless



28

double beta decay. This could serve as a check of the theory and the role of LFV would

change drastically, for one could start probing the theory behind the LFV.

It would be natural to go directly to SO(10) now, but it will be helpful to master first the

minimal grand unified theory based on SU(5) symmetry. In order to be as pedagogical as

possible, I have included Appendices D and E on SU(N) and SO(2N) groups, respectively.

In particular, Appendix E deals with the spinorial representations of SO(2N), a possibly

new topic for most of the readers. There are a number of exercises that should help you

know whether you have a mastery of the necessary group theory.

VI. SU(5): A PROTOTYPE GUT

The minimal group that can unify the Standard Model (SM) is SU(5) [12], a group of

rank four. It is actually the minimal group that can unify the SU(2)L and SU(3)c of the

SM, the U(1) comes for free.

It is natural that we should try to put the electro-weak doublet Φ and the new color

triplet hα in the 5-dimensional fundamental representation

5H = Φ =



hr

hg

hb

φ+

φ0



SU(3)c

SU(2)L

(68)

where in the obvious notation the SU(3)c symmetry is acting on the first 3 components

and the SU(2)L on the last two.

A. Structure

1. Fermions

We have 15 Weyl fields in each generation and it is natural to try to put them in a

15-dimensional symmetric representation of SU(5). Now

5⊗ 5 = 15s + 10as (69)
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Since 5 = (3c , 1L) + (1c , 2L) (in an obvious notation), since (3c ⊗ 3c)s = 6c, and since

quarks come only in color triplets, we must abandon the idea of 15S. It is not anomaly free

anyway, it could not have worked. What about 5 and 10as ? The quantum numbers of 5

from (68) imply uniquely

5F ≡ ψ =



dr

dg

db

e+

−νC


R

(70)

(recall that (fC)R ≡ Cf̄L).

Now, from ψ −→ Uψ under SU(5), the 10-dimensional representation 10F ≡ χ must

transform as

χ −→ U χ UT (71)

This is enough to give the quantum numbers of the particles in 10F

χ =
1√
2



0 uCb −uCg −ur −dr

−uCb 0 uCr −ug −dg

uCg −uCr 0 −ub −db

ur ug ub 0 e+

dr dg db −e+ 0


L

(72)

Notice that in (70), a minus sign convention for the νC field is to ensure that
(
e+ , −νC

)
R

and (e , ν)L transform identically, and in (72) the signs are the property of χ being antisym-

metric. We will work in the future with 10F and 5̄F (instead of 5F ).

We can see furthermore that a unified theory such as SU(5) explains charge quantization,

i.e. it relates quark and lepton charges. From (70)

Q(dC) = −1

3
Q(e) =

1

3
(73)

and then from (72) we see that Q(u) = Q(d) + 1 = 2/3.

2. Interactions

The interactions of fermions with gauge bosons are
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Lf = iψ̄γµDµψ − iT rχ̄γµDµχ (74)

where

Dµχ = ∂µχ− ig(Aµχ+ χATµ ) (75)

There are of course the old QCD and SU(2)L × U(1) interactions with gs = gW = g,

and sin2θW = 3/8, the couplings at the unification scale where full SU(5) is operative.

Furthermore, there are new X and Y bosons who carry both color and flavor with charges

4/3 and 1/3 respectively. Their interactions are

L(X, Y ) =
g√
2
X̄α
µ

[
d̄αRγ

µe+
R + d̄αLγ

µe+
L + εαβγū

cγ
L γµuβL

]
+

g√
2
Ȳ α
µ

[
−d̄αRγµνCR + ūαLγ

µe+
L + εαβγū

cγ
L γµdβL

]
+ h.c. (76)

As expected, due to the nontrivial color and flavor characteristics of the quarks, the X and

Y couple to the quark-quark and quark-lepton states. It is clear that B and L are violated,

although for some magic reason B −L is conserved (more about it later). This leads to the

decay of the proton, as can be seen from the effective Lagrangian upon integrating out the

heavy X and Y gauge bosons

Leff(X, Y ) ' g2

M2
X

QQQL (77)

where Q and L can stand generically for quarks and leptons.

By analogy with the usual muon decay, the proton decay rate can be estimated as

Γp '
g4

M4
X

m5
p (78)

From (τp)exp & 1033yr we get MX & 1015.5GeV ; later we will show that we can actually

compute MX .

B. Symmetry Breaking

The first stage of symmetry breaking down to the SM is achieved by the adjoint Higgs

Σ = 24H . Assume, only for the sake of simplicity, the discrete symmetry Σ → −Σ. Then

the most general renormalizable potential for Σ is given by
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V (Σ) = −µ
2

2
TrΣ2 +

1

4
a (TrΣ2)2 +

1

2
b TrΣ4 (79)

〈Σ〉 is a Hermitean matrix and thus it can be diagonalized by an SU(5) rota-

tion. Assume now that it is in the same direction as the hypercharge: 〈Σ〉 ∝ Y =

vX diag(1, 1, 1,−3/2,−3/2). From (79) you get then µ2 = 1
2
(15a+7b) v2

X , which, for µ2 > 0,

implies (15a+7b) > 0. In order to check that this is a local minimum, we must show that all

the second derivatives are positive. Since Σ has exactly the same form as the gauge boson

matrix, we can write

Σ = 〈Σ〉+


Σ8 +

√
3
5

(
−2

3

)
1cΣ0 Σ̄X Σ̄Y

ΣX

√
1
2
Σ3 +

√
3
5
Σ0 Σ+

ΣY Σ− −
√

1
2
Σ3 +

√
3
5
Σ0


(80)

where Σ8 are the analogs of gluons, ΣX and ΣY the analogs of X and Y , Σ3, Σ+, Σ− and

Σ0 the analogs of W 3, W+, W− and B, respectively. The masses of the particle masses in

Σ are

m2(Σ8) =
5

4
b v2

X

m2(Σ3) = m2(Σ±) = 5b v2
X

m2(Σ0) =
15a+ 7b

2
v2
X

m2(ΣX) = m2(ΣY ) = 0 (81)

Thus for 15a+ 7b > 0, b > 0 the extremum is a local minimum of the theory. Notice that

ΣX and ΣY are would-be Goldstone bosons of the theory; they get “eaten” by the X and Y

gauge fields, i.e. they become their longitudinal components.

Finally, one can show that the vev of Σ is actually a global minimum. In fact, other

extrema can be shown to be at best saddle points.

Exercise:
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HARD. Prove that the above minimum is in fact global. Hint: show that the only possible

minima are the SU(5), SU(4)× U(1) and SU(3)× SU(2)× U(1). Then show that for the

above conditions of the SM minimum, the other two extrema are the maxima.

Thus SU(5) can be successfully broken down to the standard model, since as we said

Y commutes with both the SU(3)c and SU(2)L × U(1)Y generators. This will be even

more evident from the study of the gauge bosons mass matrix. Since Σ is in the adjoint

representation, DµΣ = ∂µΣ− ig[Aµ,Σ], and one has

1

2
(Dµ < Σ >)†(Dµ < Σ >) =

25

8
g2v2

X

[
X̄a
µX

µ
a + Ȳ a

µ Y
µ
a

]
(82)

where a as usual is the color index, a = r, g, b. As expected, the gluons and the electro-weak

gauge bosons remain massless, but X and Y get equal masses

m2
X = m2

Y ≡M2
X =

25

8
g2v2

X (83)

as a consequence of both SU(3)c and SU(2)L remaining unbroken. The original SU(5)

symmetry is broken down to SU(3)c × SU(2)L × U(1)Y .

The rest of the breaking is completed by a 5-dimensional Higgs multiplet Φ5 which con-

tains the Standard Model doublet. Let us study this in some detail including the full SU(5)

invariant potential. We can write

V (Σ,Φ) = −µ
2
Σ

2
TrΣ2 +

1

4
a( TrΣ2)2 +

1

2
b TrΣ4

− µ2
Φ

2
Φ†Φ +

λ

4
(Φ†Φ)2

+ αΦ†Φ TrΣ2 − βΦ†Σ2Φ (84)

with a > 0, λ > 0, 15a+ 7b > 0 and β > 0. Since both SU(3)c and SU(2)L are unbroken at

this point, we can always rotate 〈Φ〉 into the form 〈ΦT 〉 = (vc, 0, 0, 0, vW ). It is only the β

term that is sensitive to the direction of < Φ > and it gives −βv2
X(v2

c + 9/4v2
W ), which for

β > 0 forms the solution vW 6= 0, vc = 0 in order to minimize the energy.

It is an easy exercise to compute the mass of the colored triplet scalar ha in 〈Φ〉, it is

m2
h = 5

2
βv2

X , which justifies the choice β > 0. It is also easy to show that

M2
W =

g2

4λ

[
µ2

Φ +
8M2

X

25g2
(−15α +

9

2
β)

]
(85)
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But MX & 1015GeV , which implies an extraordinary fine-tuning in the above equation of

at least 26 orders of magnitude since the number on the right hand side of (85) is naturally

of order M2
X . This is known as the hierarchy problem.

In the next subsection we will see that the colored triplet ha mediates proton decay and

thus it must be very heavy: mh & 1012GeV , implying that β cannot be taken arbitrarily

small. This aspect of the hierarchy problem is known as the doublet-triplet splitting problem.

Before we close this subsection, let us say a few words more on the hierarchy problem.

The problem is that the mass term for the Higgs scalars cannot be made small (or zero) by

any symmetry, unlike the case of fermions. There the limit mf = 0 leads to chiral symmetry

and thus the higher order corrections must also vanish if mf = 0 at the tree level. In other

words, the higher order corrections are necessarily proportional to mf (tree), and so only

logarithmically divergent. In the case of scalars the divergence is quadratic and thus in the

context of grand unified theories (GUTs) such as SU(5) the natural value for MW is of order

MX .

C. Yukawa Couplings and Fermion mass relations

In the Standard Model the left-handed fermions are doublets and the right-handed

fermions are singlets, and so their chiral property is more than manifest. In SU(5) the

V-A structure of a family of fermions is left-intact and here also there are no direct mass

terms for fermions.

In the minimal SU(5) theory the fermion masses originate through the Yukawa couplings

of fermions with the light Higgs Φ

LY = fd ψ̄R χΦ† + fu
1

2
χT C χΦ + h.c. (86)

where C is the Dirac conjugation matrix, and fu is clearly a symmetric matrix. The symbolic

notation of (86) should read in the SU(5) notation as

ψ̄R χΦ† = ψ̄R i χ
ij Φ†j

χT C χΦ = εijklm (χT )ij C χkl Φm (87)
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With < Φ >T= ( 0 0 0 0 vW ), we get for fermionic masses

Lm = fdvW (d̄RdL + ē+
Re

+
L)− fuvW (uc)TL C uL + h.c.

= −[fdvW (d̄d+ ēe)− fuvW ūu] (88)

Minimal SU(5) predicts the same masses for charged leptons and down quarks: md = m`

[51].

Exercise:

Explain why md = m`.

Unfortunately, this works bad even for the third family, since atMX one findsmb = 0.6mτ .

This means that one must include higher dimensional operators [63] in the Yukawa sector,

up to now neglected. Alternatively, you can include other Higgs representations that can

contribute to the fermionic masses; for example, you can add 45H .

Now, besides the usual Yukawa structure of the Higgs doublet in the SM, one has new

interactions of the color triplet hα. From (86) and (87) it is easy to compute it’s couplings

to fermions

Lh = fdψ̄R iχ
i αh+

α + fuεijklα(χT )ijCχklhα (89)

which gives

Lh =
{
fd
(
εαβγūcLβ d

γ
R + ūαL e

+
R + d̄αL ν

c
R

)
+fu

(
εαβγūcRβ d

γ
L + ūαR e

+
L

)}
hα (90)

Notice that the structure of the above couplings (not the strength, though), is dictated

by the SU(3)C × SU(2)L × U(1)Y gauge invariance only. This becomes more clear if we

write ūcLdR = uTRCdR and ūcRdL = uTLCdL.

It is clear that the interactions of H break B and L, just like those of X and Y . Notice,

though, that B−L is again conserved. In a complete analogy with the situation encountered

before for the X and Y bosons, we have the possible exchanges of hα which leads to the

proton decay. Of course, the amplitude is proportional to small Yukawa couplings and the

corresponding limit on its mass is somewhat less strict: mh & 1012GeV .

We know that in the standard model the neutral current interactions are flavor diagonal

and that the charged current processes lead to flavor mixing and CP violation. How is this
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feature incorporated in the SU(5) theory and what about new superweak interactions of

the X and Y bosons ? The analysis is straightforward and it proceeds along the same lines

as in the SU(2)L × U(1)Y theory [52]. I should stress that the predictions we will obtain

are of course not realistic since in this minimal theory neutrinos are massless and the down

quark and charged lepton mass relations come out wrong. The minimal model discussed

here should be viewed only as a prototype of the what predictive theory should be like.

We diagonalize as usual fermion mass matrices by bi-unitary transformations

U †LfMfURf = Df (91)

where Df is diagonal, with its elements being real, positive numbers. Furthermore, since

Mu is symmetric

URu = U∗LuK∗ (92)

where

K =


eiφu

eiφe

eiφt

...

 (93)

is the matrix of phases needed to ensure that the elements of Du are real and positive. The

above statements are equivalent to the redefinition of our original fermionic fields in the

Lagrangian

fL,R → U †L,RfL,R (94)

with UdL,R = U e+L,R. Since on the other hand the neutrinos are massless, we can rotate

them any which way we wish and so we chose νcR → UdRνcR . Thus we can write for the

5-dimensional representation ψR → UdRψR, which means that UdR disappears since it is just

an overall factor. Suppressing the color index, we can write

χ →


ULuKuc −ULuu −ULdd

−ULde+


L

= ULd


UCKMKuc −UCKMu −d

−e+


L

(95)
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where UCKM = U †LdULu. Although I use the CKM notation, this matrix has in general extra

quark phases that one rotates away in the SM interactions of the W boson. Again ULd is just

an overall factor and so it will disappear. Thus, the X and Y boson interactions involve no

new flavor mixings besides UCKM , only new phases. This was coined the ‘kinship’ hypothesis

by Wilczek and Zee [53], and in the minimal SU(5) it is unfortunately the consequence of

wrong mass relations md = m`. In the physical basis we get

L(X, Y ) =
g√
2
X̄µ

[
d̄R γ

µ e+
R + d̄L γ

µ e+
L + ūcL γ

µK∗ uL
]

+
g√
2
Ȳµ

[
−d̄R γµ νcR + ūL γ

µ U †CKM e+
L + ūcL γ

µ U †CKM dL

]
+ h.c. (96)

From U11 ∝ cos θc, U12 ∝ sin θc we would expect

Γ(p→ π0µ+)

Γ(p→ π0e+)
∝ sin2 θc (97)

Of course, this minimal SU(5) model is not realistic, for down and strange quark masses

are not equal to their leptonic counterparts at the unification scale. It is only an illustration

how proton decay partial rates are connected to the fermion masses and mixings. The true

test can only be possible in a completely realistic grand unified theory of fermion masses

and mixings.

In any case, the minimal SU(5) theory fails to explain neutrino masses; it is custom fit for

massless neutrinos. While non-minimal models can lead to non-vanishing neutrino masses,

by itself, SU(5) just like the standard model cannot relate neutrino masses to charged

fermion masses nor relate quark and lepton mixing angles. This is cured beautifully in the

SO(10) theory which requires the existence of right-handed neutrinos and leads to small,

non-vanishing neutrino masses through the seesaw mechanism. The main ingredients are

the left-right and quark-lepton symmetry inbuilt in SO(10) automatically. However, SU(5)

offers an interesting possibility of neutrino Yukawa couplings be probed at LHC and before

moving to SO(10) in Section VII we will discuss a simple and predictive SU(5) theory with

an adjoint fermionic representation added to the minimal model discussed above. We will

show that the theory is completely realistic and testable at colliders.
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D. Low energy predictions

1. Ordinary SU(5)

I discuss here some elementary and simple aspects of gauge coupling unification, at the

one loop level. As is well known, the couplings run logarithmically with energy. We have

1

αG(MW )
=

1

αU
− 1

2π
bG ln

MX

MW

(98)

for the gauge group G; MX is the energy where we imagine the unification to take place, and

αU is the value of the unified coupling at MX . One has a generic formula for the running

coefficient

bG =
11

3
TGB −

2

3
TF −

1

3
TH (99)

where the Casimir TR for the representation R is defined by

TRδij = TrTiTj (100)

and Ti are the Hermitian traceless generators of a group in question. For the fundamental

representation of SU(N) the convention is the one of SU(2): Tfund = 1
2
, which implies for

the adjoint representation (relevant for gauge bosons) in SU(N): Tadj = TGB = N .

Exercise:

Prove the above claim: Tadj = TGB = N for the adjoint of SU(N) using Tfund = 1
2
.

This gives for the SU(3)C , SU(2)L and U(1) respectively

b3 =
33

3
− 4

3
ng

b2 =
22

3
− 4

3
ng −

1

6
nH

b1 =
3

5
bY = −4

3
ng −

1

10
nH (101)

where Ng is the number of generations, nH is the number of Higgs doublets (nH = 1 in the

minimal standard model).

We are now fully armed to check the evolution of these couplings above MW . Using

α1(MX) = α2(MX) = α3(MX) = αU , we get

1

αi(MW )
− 1

αj(MW )
=
bj − bi

2π
ln
MX

MW

(102)
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From αem = sin2 θWα2 = cos2 θWαY and αY = 3/5α1 we get easily

1

α2(MW )
− 1

α3(MW )
=

22 + nH
12π

ln
MX

MW

sin2 θW (MW ) =
3

8
− 110− nH

48π
αem(MW ) ln

MX

MW

(103)

Notice the prediction sin2 θW = 3
8

at MX which we discussed before. Now, for nH = 1

and by taking a α3(MW ) ' .12, α2(MW ) ' 1/30 we find MX ' 1016GeV , but

sin2 θW (MW ) ' 0.2 (104)

The minimal SU(5) theory thus fails to meet the experiment.

2. Supersymmetric SU(5)

Supersymmetry, i.e. symmetry between bosons and fermions guarantees the cancellation

of quadratic divergences for the Higgs mass and thus can make MW insensitive to MX . That

is, we do not know why MW/MX is small, but it is not a problem, since it will stay small

in perturbation theory as long as the scale of supersymmetry breaking is small ΛSS 'MW .

The point is that the Higgs mass term is invariant under the internal symmetries and thus

is normally not protected from high scales as manifested by quadratic divergences. The

fermion masses, on the other hand, are protected by chiral symmetry and thus insensitive

to large scales as manifested by ’small’ logarithmic divergences. In supersymmetry scalars

and fermions are not distinguishable and thus Higgs mass is under control too.

Then for every particle of the standard model there is a supersymmetric partner of the

opposite statistics
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fermions ⇐⇒ sfermions

(quarks, leptons) (squarks, sleptons)

s = 1/2 s = 0

gauge bosons ⇐⇒ gauginos

(W±, Z, γ, gluons) (Wino, Zino, photino, gluinos)

s = 1 s = 1/2

Higgs scalar ⇐⇒ Higgsino

s = 0 s = 1/2

It is easy to see that the formulas for the running of the gauge couplings will be affected

by the presence of the new particles. From (99) we get

bSSG =

(
11

3
− 2

3

)
TGB −

(
2

3
+

1

3

)
TF −

(
1

3
+

2

3

)
TH (105)

or

bG = 3TGB − TF − TH (106)

where the added contributions in (105) are due to the superpartners.

From (106) we get for the individual gauge couplings

bSS3 = 9− 2ng

bSS2 = 6− 2ng −
1

2
nH

bSS1 = −2ng −
3

10
nH (107)

where nH is again the number of Higgs doublets.

In exactly the same way as before, assuming the unification of couplings at MX , we find

[54]

1

α2(MW )
− 1

α3(MW )
=

6 + nH
4π

ln
MX

MW

sin2 θW (MW ) =
3

8
− 30− nH

16π
αem(MW ) ln

MX

MW

(108)
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In the minimal supersymmetric standard model (MSSM) nH = 2, and so [54] [55] [56] [57]

MX ' 1016GeV (109)

and

sin2 θW (MW ) =
1

5
+

7

15

αem(MW )

α3(MW )
' 0.23 (110)

MSSM agrees perfectly well with the experiment and with the above value for MX we

predict the proton lifetime

τp ' 1035yr (111)

which is above the experimental bound (for the mode p→ π0e+) [58]

(τp)exp ≥ 8× 1033yr (112)

It actually did even better: the prediction of sin2θW = 0.23 was tied to the prediction of

the heavy top quark, with mt ' 200GeV . Namely, in 1981 the low indirect measurements

gave sin2θW = 0.21, with the assumed value ρ = 1. In order to make a case for low energy

supersymmetry, Marciano and I [57] had to say that ρ was bigger, which required loops,

which required at least one large coupling, and the only SM candidate was the top quark,

with yt ' 1. It is remarkable that both the sin2θW = 0.23 and the heavy top would turn

out to be true.

Now, if we are to take supersymmetry seriously, all the way up to the scale MX , we

expect of course new gauginos X̃, Ỹ , associated with the superheavy bosons X and Y of

SU(5); and also heavy Higgsinos h̃α from 5 of SU(5). The exchange of the heavy Higgsinos

leads to proton decay, suppressed only linearly by the GUT scale [59]. More precisely, the

exchange of heavy Higgsinos gives the effective operator d = 5 proton decay operator of the

type
1

MT

QLQ̃Q̃ (113)

where Q and L stand for quarks and leptons and Q̃ stands for squarks while MT is the mass

of the heavy color triplet Higgsino. In turn the squarks are changed into quarks through the

exchange of gauginos and one obtains an operator of the form QQQL of the proton decay.

A rough estimate gives

GT '
α

4π
yu yd

mgaugino

MTm2
f̃

' 10−30 GeV−2
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which for yu ' yd ' 10−4, mgaugino ' 100 GeV, mf̃ 'TeV and MT ' 1016 GeV gives τp(d =

5) ' 1030−31 yr. It would seem that today this theory is ruled out. It was actually proclaimed

dead in 2001 when the triplet mass was carefully computed to give M0
T = 3 × 1015GeV

[60] (for the superscript 0 explanation, see below). Caution must be raised however for two

important reasons: i) the uncertainty in sfermion masses and mixings [61] and ii) uncertainty

in MT [62] due to necessity of higher dimensional operators [63] to correct bad fermion mass

relations md = m` [51]. The d = 4 operators, besides correcting these relations also split

the masses m3 and m8 of weak triplet and color octet, respectively, in the adjoint 24H Higgs

super multiplet and one gets

MGUT = M0
GUT

(
M0
GUT

2m8

)1/2

MT = M0
T

(
m3

m8

)5/2


M0

GUT ' 1016 GeV

M0
T = 3× 1015GeV

where the superscript 0 denotes the predictions for m3 = m8 at the tree level with

d = 5 operators neglected. The fact that MGUT goes up with m8 below MGUT was noticed

quite some time ago [64]. Imagine that d = 4 terms dominate for small cubic Yukawa self

coupling, in which case one has m3 = 4m8 and thus MT = 32M0
T ' 1017 GeV ' MGUT

(m8 ' 1015 GeV). In turn a strong suppression of proton decay with τp ' 103τ 0
p (d = 5) '

1033−34 yr. In principle the ratio of the triplet and octet masses can be as large as one

wishes, so at first glance the proton lifetime would seem not to be limited from above at

all. However, all this makes sense if the theory remains perturbative and thus predictive.

Increasing MGUT would bring it too close to the Planck scale, so it is fair to conclude that

the proton lifetime is below 1035 yr.

E. *SU(5) and neutrino mass

The minimal theory of Georgi and Glashow fails in two crucial ways:

a) it predicts massless neutrinos b) gauge couplings do not unify

We need a minimal extension that cures both problems. It does not suffice to add right-

handed neutrinos for they are gauge singlets and no not contribute to the running of gauge

couplings and thus cannot help the unification. In other words type I seesaw fails in minimal

SU(5). One could try type II, which requires a 15-dimensional Higgs representation, but

instead I wish to discuss here a particularly simple and predictive theory [65], since it
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only requires adding the adjoint fermions 24F to the existing minimal model with three

generations of quarks and leptons, and 24H and 5H Higgs fields. This automatically leads

to the hybrid scenario of both type I and type III seesaw, since 24F has also a SM singlet

fermion, i.e. the right-handed neutrino. This should be clear to the alert student. After

all, the 24F is completely analogous to the 24H or even better the adjoint gauge boson

representation, which we studied at length. The fermionic triplet simply corresponds to

the SU(2) gauge boson triplet, whereas the singlet corresponds to the U(1) gauge boson.

This singlet can be interpreted as a right handed neutrino, for it is a SM neutral particle

with Yukawa couplings to the light neutrinos. The triplet fermion on the other hand has

the quantum numbers of the winos, the supersymmetric partners of the SU(2) charged and

neutral gauge bosons.

The main prediction of this theory is the lightness of the fermionic triplet. For a conven-

tional value of MGUT ≈ 1016 GeV, the unification constraints strongly suggest its mass below

TeV, relevant for the future colliders such as LHC. The triplet fermion decay predominantly

into W (or Z) and leptons, with lifetimes shorter that about 10−12 sec.

Equally important, the decays of the triplet are dictated by the same Yukawa couplings

that lead to neutrino masses and thus one has an example of predicted low-energy seesaw

directly testable at colliders and likely already at LHC.

The minimal implementation of the type III seesaw in non-supersymmetric SU(5) re-

quires a fermionic adjoint 24F in addition to the usual field content 24H , 5H and three

generations of fermionic 10F and 5F . The consistency of the charged fermion masses re-

quires higher dimensional operators in the usual Yukawa sector [63]. One must add new

Yukawa interactions

LY ν = yi05̄iF24F5H (114)

+
1

Λ
5̄iF
[
yi124F24H + yi224H24F + yi3Tr (24F24H)

]
5H + h.c. .

After the SU(5) breaking one obtains the following physical relevant Yukawa interactions

for neutrino with the triplet TF ≡ ~TF · ~σ and singlet SF fermions (together with mass terms

for TF and SF

LY ν = Li
(
yiTTF + yiSSF

)
H +

mS

2
SFSF +

mT

2
TFTF + h.c. (115)

where yiT , yiS are two different linear combinations of yi0 and yiavGUT/Λ (a = 1, 2, 3), Li are

the lepton doublets and H is the Higgs doublet. It is clear from the above formula that
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besides the new appearance of the triplet fermion, the singlet fermion in 24F acts precisely

as the right-handed neutrino; it should not come out as a surprise, as it has the right SM

quantum numbers.

After the SU(2) × U(1) symmetry breaking (〈H〉 = v ≈ 174GeV), one obtains in the

usual manner the light neutrino mass matrix upon integrating out SF and TF

mij
ν = v2

(
yiTy

j
T

mT

+
yiSy

j
S

mS

)
(116)

with mT ≤ 1 TeV (see below) and mS undetermined.

From the above formula, one important prediction emerges immediately: only two light

neutrinos get mass, while the third one remains massless. This is understood readily. First,

the Yukawas here are vectors, and for example the vector coupling corresponding to the

triplet can be rotated in the say 3rd direction. Thus only one light neutrino effectively

coupled to the triplet, i.e. only one neutrino gets the mass through this coupling. Obviously,

the same could have been said about the singlet an thus only two massive light neutrinos.

This is of course independent of the nature of the heavy states, and the number of light

massive neutrinos is in direct proportion to the number of heavy fermions, be they singlets

or triplets.

The mass of the fermionic triplet is found by performing the renormalization group anal-

ysis as before. From [65] one has

exp
[
30π

(
α−1

1 − α−1
2

)
(MZ)

]
= (117)(

MGUT

MZ

)84
((

mF
3

)4
mB

3

M5
Z

)5(
MGUT

mF
(3,2)

)20(
MGUT

mT

)
,

exp
[
20π

(
α−1

1 − α−1
3

)
(MZ)

]
= (118)(

MGUT

MZ

)86
((

mF
8

)4
mB

8

M5
Z

)5(
MGUT

mF
(3,2)

)20(
MGUT

mT

)−1

,

where mF,B
3 , mF,B

8 , mF
(3,2) and mT are the masses of weak triplets, color octets, (only

fermionic) leptoquarks and (only bosonic) color triplets respectively.

We discussed at length the well known problem in the standard model of the low meeting

scale of α1 and α2. It is clear that the SU(2) triplet fermions are ideal from this point of

view since they slow down the running of α2, while leaving α1 intact (other particles have

non vanishing hypercharge and thus make α1 grow faster as to meet α2 even before). They
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should clearly be as light as possible while the color triplet as heavy as possible. In order

to illustrate the point, take mF
3 = mB

3 = MZ and mT = MGUT . This gives (α−1
1 (MZ) = 59,

α−1
2 (MZ) = 29.57, α−1

3 (MZ) = 8.55) MGUT ≈ 1015.5 GeV. Increasing the triplet masses mF,B
3

reduces MGUT dangerously, making proton decay too fast.

Finally, one can ask, where must the octets be. Since the triplets slowed down the

running of α2, the meting point of α2 and α3 would become too large, unless α3 gets slowed

down too. Thus the octets must lie much below MGUT , but since they contribute to the

running more than the triplets, they should be also much above the weak scale, and one

gets m8 = 107 − 108GeV

For a more detailed discussion of unification constraints and the physics of the triplets,

see [66], and for phenomenology of the triplet relevant for colliders, see [67]. The bottom

line is a prediction of the light weak fermion triplet

mT ≤ TeV (119)

Its decays proceed via its Yukawa couplings yT and thus probe the neutrino mass. One

can parametrize yT through the lepton mixing matrix [68].

In normal hierarchy (NH) i.e. mν
1 = 0,

vyi∗T = i
√
mT

(
Ui2
√
mν

2 cos z ± Ui3
√
mν

3 sin z
)
, (120)

while in inverted hierarchy (IH) i.e. mν
3 = 0,

vyi∗T = i
√
mT

(
Ui1
√
mν

1 cos z ± Ui2
√
mν

2 sin z
)
. (121)

where z is a complex parameter.

You can readily show that in NH the neutrino masses are

mν
1 = 0 , mν

2 =
√

∆m2
S , mν

3 =
√

∆m2
A + ∆m2

S , (122)

while in the IH case

mν
1 =

√
∆m2

A −∆m2
S , mν

2 =
√

∆m2
A , m

ν
3 = 0 . (123)

The the predominant decay modes of the triplets [66] are T → W (Z) + light lepton

whose strength is dictated by the neutral Dirac Yukawa couplings.



45

Γ(T− → Ze−k ) =
mT

32π

∣∣ykT ∣∣2(1− m2
Z

m2
T

)2(
1 + 2

m2
Z

m2
T

)
, (124)

∑
k

Γ(T− → W−νk) =
mT

16π

(∑
k

∣∣ykT ∣∣2
)(

1− m2
W

m2
T

)2(
1 + 2

m2
W

m2
T

)
, (125)

Γ(T 0 → W+e−k ) = Γ(T 0 → W−e+
k ) =

=
mT

32π

∣∣ykT ∣∣2(1− m2
W

m2
T

)2(
1 + 2

m2
W

m2
T

)
, (126)

∑
k

Γ(T 0 → Zνk) =
mT

32π

(∑
k

∣∣ykT ∣∣2
)(

1− m2
Z

m2
T

)2(
1 + 2

m2
Z

m2
T

)
, (127)

where we averaged over initial polarizations and summed over final ones. From (126) one

sees that the decays of T 0, just as those of righthanded neutrinos, violate lepton number. In

a machine such as LHC one would typically produce a pair T+T 0 (or T−T 0), whose decays

then allow for interesting ∆L = 2 signatures of same sign di-leptons and 4 jets. This fairly

SM background free signature is characteristic of any theory with righthanded neutrinos as

discussed in [37]. The main point here is that these triplets are really predicted to be light,

unlike in the case of righthanded neutrinos. We discuss this further in the Section VIII on

lepton number violation.
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VII. SO(10): FAMILY UNIFIED

The minimal gauge group that unifies the gauge interactions of the standard model was

seen in the previous subsection to be based on SU(5) and studied at length. It is tailor fit

for massless neutrinos just as the SM, for in the minimal version of the theory neutrinos get

neither Dirac nor Majorana mass terms. Furthermore, the ordinary, non supersymmetric

theory fails to unify gauge couplings. We found that the simple extension with the ad-

joint fermion representation provides a minimal and remarkably predictive theory with light

fermionic triplet expected at LHC and whose decay rates probe the Dirac Yukawa couplings

of neutrinos. We have a theory that works and furthermore gives serious hope for an old

dream of verifying seesaw mechanism at colliders. So why should one ever wish to go beyond

SU(5)? We can think of at least two reasons. First, if one is to worry about the Higgs mass

naturalness, one may wish to include supersymmetry. While SU(5) with the low energy su-

persymmetry has a rather appealing feature of providing automatically (as predicted many

years ago) a gauge coupling unification, it is not an interesting theory of fermion masses

and mixings. First of all, it offers no explanation for the smallness of R-parity violation

in nature, and at the same time it requires a certain amount of arbitrary and unpredicted

R-parity violation in order to provide neutrino masses. One can also include the type II

seesaw into the theory through the 15H supermultiplet, and even attribute to it a mediation

of supersymmetry breaking [69], but one ends up without any direct low energy probes or

interesting quark-lepton mass and mixings relations. This is where SO(10) fits ideally, for

it also unifies matter besides the interactions. It works nicely without supersymmetry too,

for it provides a natural unification of gauge couplings through the intermediate scale of LR

symmetry breaking.

The general case SO(2N) is presented in Appendix E. The one important representation

of SO(10) is a 16-dimensional spinor, which can be decomposed under SU(5) as 16 =

10 + 5̄ +1. It unifies a family of fermions with an addition of a right handed neutrino

per family. This minimal grand unified theory that unifies matter on top of interactions

suggests naturally small neutrino masses through the seesaw mechanism. Furthermore, it

relates neutrino masses and mixings to the ones of charged fermions, and is predictive in

its minimal version. In this Section I discuss some salient features in this theory while

focusing on its minimal realizations. The crucial representation is a self-dual five index anti-
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symmetric one responsible for right-handed neutrino masses and is a must, whether being

elementary of composed at the loop level or through the higher dimensional operators. A

number of different minimal realizations of SO(10) depends on this construction, and what

follows summarizes a few of them.

There are a number of features that make SO(10) special:

1. a family of fermions is unified in a 16-dimensional spinorial representation. This in turn

predicts the existence of right-handed neutrinos and the seesaw mechanism emerges

naturally;

2. L − R symmetry is a finite gauge transformation in the form of charge conjugation.

This is a consequence of both left-handed fermions fL and its charged conjugated

counterparts (f c)L ≡ Cf
T

R residing in the same representation 16F ;

3. in the supersymmetric version, matter parity M = (−1)3(B−L), equivalent to the R-

parity R = M(−1)2S, is a gauge transformation [70], a part of the center Z4 of SO(10).

It simply reads 16→ −16, 10→ 10. Its fate depends then on the pattern of symmetry

breaking (or the choice of Higgs fields); it turns out that in the renormalizable version of

the theory R-parity remains exact at all energies [71, 72]. The lightest supersymmetric

partner (LSP) is then stable and is a natural candidate for the dark matter of the

universe;

4. its other maximal subgroup, besides SU(5) × U(1), is SO(4);×SO(6) = SU(2)L ×
SU(2)R×SU(4)c symmetry of Pati and Salam. It explains immediately the somewhat

mysterious relations md = me (or md = 1/3me) of SU(5);

5. the unification of gauge couplings can be achieved with or without supersymmetry;

6. the minimal renormalizable version (with no higher dimensional 1/MPl terms) offers a

simple and deep connection between b− τ unification and a large atmospheric mixing

angle in the context of the type II seesaw [73] [74].

subsectionGauge bosons and proton decay

The gauge bosons of SO(10) belong to the 45V representation. From the decomposition

under Pati-Salam SU(4)c × SU(2)L × SU(2)R maximal subgroup

10 = (1, 2, 2) + (6, 1, 1) (128)
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one gets

45 = (15, 1, 1) + (6, 2, 2) + (1, 3, 1) + (1, 1, 3) (129)

The first set of gauge bosons contains the gluons, and the Pati-Salam lepto-quark gauge

bosons XPS with the interactions

The second set contains a bi-doublet of proton decay inducing gauge bosons. Besides X

and Y bosons of SU(5), it also contains their SU(2)R partners X ′, Y ′ with new interactions

L(X ′, Y ′) =
g√
2
X̄α
µ

[
d̄αRγ

µe+
R + d̄αLγ

µe+
L + εαβγū

cγ
L γµuβL

]
+

g√
2
Ȳ α
µ

[
−d̄αRγµνCR + ūαLγ

µe+
L + εαβγū

cγ
L γµdβL

]
+ h.c. (130)

A. Yukawa sector

Fermions belong to the spinor representation 16F [75]. From

16× 16 = 10 + 120 + 126 (131)

the most general Yukawa sector in general contains 10H , 120H and 126H , respectively the

fundamental vector representation, the three-index antisymmetric representation and the

five-index antisymmetric and anti-self-dual representation. This can be seen by analogy

with the Yukawa couplings of SO(6) (see Appendix E)

Ly = y10ΨTBΓiΨΦi + y120ΨTBΓiΓjΓkΨΦ[ijk]

+ y126ΨTBΓiΓjΓkΓlΓmΨΦ−[ijklm] (132)

126H is necessarily complex, supersymmetric or not; 10H and 126H Yukawa matrices are

symmetric in generation space, while the 120H one is antisymmetric.

Understanding fermion masses is easier in the Pati-Salam language of one of the two

maximal subgroups of SO(10), GPS = SU(4)c×SU(2)L×SU(2)R (the other being SU(5)×
U(1)). Let us decompose the relevant representations under GPS

16 = (4, 2, 1) + (4̄, 1, 2)

10 = (1, 2, 2) + (6, 1, 1)

120 = (1, 2, 2) + (6, 3, 1) + (6, 1, 3) + (15, 2, 2) + (10, 1, 1) + (10, 1, 1)

126 = (10, 3, 1) + (10, 1, 3) + (15, 2, 2) + (6, 1, 1) (133)
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I illustrate the decomposition of a spinor representation 16 = Ψ+ (see Appendix E )

Ψ+ ≡ |ε1...ε5〉; ε1..ε5 = +1 (134)

It contains

ε1ε2ε3 = +1; ε4ε5 = +1 (135)

and

ε1ε2ε3 = −1; ε4ε5 = −1 (136)

The first one is 4 of SU(4)C , doublet of SU(2)L and the latter 4̄ of SU(4)C , doublet of

SU(2)R, as can be read off readily from the sections on SO(4) and SO(6) of Appendix E.

Exercise: Try to arrive at the rest of the above decomposition using the material in

Appendix E

Clearly, the seesaw mechanism, whether type I or II, requires 126: it contains both

(10, 1, 3) whose vev gives a mass to νR (type I), and (10, 3, 1), which contains a color singlet,

B − L = 2 field ∆L, that can give directly a small mass to νL (type II). A reader familiar

with the SU(5) language sees this immediately from the decomposition under this group

126 = 1 + 5 + 15 + 45 + 50 (137)

The 1 of SU(5) belongs to the (10, 1, 3) of GPS and gives a mass for νR, while 15 corresponds

to the (10, 3, 1) and gives the direct mass to νL.

Of course, 126H can be a fundamental field, or a composite of two 16H fields, or can even

be induced as a two-loop effective representation built out of a 10H and two gauge 45-dim

representations. In what follows I shall discuss carefully all three possibilities.

Normally the light Higgs is chosen to be the smallest one, 10H . Since 〈10H〉 = 〈(1, 2, 2)〉PS
is a SU(4)c singlet, md = me follows immediately, independently of the number of 10H you

wish to have. Thus we must add either 120H or 126H or both in order to correct the bad mass

relations. Both of these fields contain (15, 2, 2)PS, and its vev gives the relation me = −3md.

As 126H is needed anyway for the seesaw, it is natural to take this first. The crucial point

here is that in general (1, 2, 2) and (15, 2, 2) mix through 〈(10, 1, 3)〉 [76] and thus the light

Higgs is a mixture if the two. In other words, 〈(15, 2, 2)〉 in 126H is in general non-vanishing

[110]. It is rather appealing that 10H and 126H may be sufficient for all the fermion masses,

with only two sets of symmetric Yukawa coupling matrices.
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B. An instructive failure

Before proceeding, let me emphasize the crucial point of the necessity of 120H or 126H in

the charged fermion sector on an instructive failure: a simple and beautiful model by Witten

[77]. The model is non-supersymmetric and the SUSY lovers may place the blame for the

failure here. It uses 〈16H〉 in order to break B − L, and the ”light” Higgs is 10H . Witten

noticed an ingenious and simple way of generating an effective mass for the right-handed

neutrino, through a two-loop effect which gives

MνR ' yup

(α
π

)2

MGUT (138)

where one takes all the large mass scales, together with 〈16H〉, of the order MGUT . Since

〈10H〉 = 〈(1, 2, 2)PS〉 preserves quark-lepton symmetry, it is easy to see that

Mν ∝ Mu

Me = Md

Mu ∝ Md (139)

so that Vlepton = Vquark = 1. The model fails badly.

The original motivation here was a desire to know the scale of MνR and increase Mν ,

at that time neutrino masses were expected to be larger. But the real achievement of this

simple, elegant, minimal SO(10) theory is the predictivity of the structure of MνR and thus

Mν . It is an example of a good, albeit wrong theory: it fails because it predicts.

What is the moral behind the failure? Not easy to answer. The main problem, in my

opinion, was to ignore the fact that with only 10H already charged fermion masses fail. One

needs to enlarge the Higgs sector, by adding for example a 120H ; the theory still leads to

interesting predictions while possible completely realistic [78] [79].

C. *Non-supersymmetric SO(10)

In the last two decades, and especially after its success with gauge coupling unification,

grand unification by an large got tied up with low energy supersymmetry. This is cer-

tainly well motivated, since supersymmetry is the only mechanism in field theory which

controls the gauge hierarchy. In SO(10), gauge coupling unification needs no supersymme-

try whatsoever. It only says that there must be intermediate scales [80], such as Pati-Salam
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SU(4)c×SU(2)L×SU(2)R or Left-Right SU(3)c×SU(2)L×SU(2)R×U(1)B−L symmetry,

between MW and MGUT . An oasis or two in the desert is always welcome.

Thus if we accept the fine-tuning, as we seem to be forced in the case of the cosmological

constant, we can as well study the ordinary, non-supersymmetric version of the theory. In

this context the idea of the cosmic attractors [81] as the solution to the gauge hierarchy

becomes extremely appealing. It needs no supersymmetry whatsoever, and enhances the

motivation for ordinary grand unified theories. In what follows I discuss some essential

features of a possible minimal such theory with 126H as a necessary ingredient for seesaw.

Let us start by analyzing the case with an extra 10H field [82]. The most general Yukawa

interaction is

LY = 16F
(
10HY10 + 126HY126

)
16F + h.c. . (140)

where Y10 and Y126 are symmetric matrices in the generation space. With this one obtains

relations for the Dirac fermion masses

MD = M1 +M0 , MU = c1M1 + c0M0 ,

ME = −3M1 +M0 , MνD = −3c1M1 + c0M0, (141)

where we have defined

M1 = 〈2, 2, 15〉d126 Y126 , M0 = 〈2, 2, 1〉d10 Y10 , (142)

and

c0 =
〈2, 2, 1〉u10

〈2, 2, 1〉d10

, c1 =
〈2, 2, 15〉u126

〈2, 2, 15〉d126

. (143)

In the physically sensible approximation θq = Vcb = 0, these relations imply

c0 =
mc(mτ −mb)−mt(mµ −ms)

msmτ −mµmb

≈ mt

mb

, (144)

Exercise: Derive this formula.

Notice that this means that 10H cannot be real, since in that case one would have

|〈2, 2, 1〉u10| = |〈2, 2, 1〉d10|, implying mt/mb of order one. It is necessary to complexify 10H ,

just as in a supersymmetric theory. If taking advantage of this fact one decides to impose

a Peccei-Quinn symmetry, thus providing a Dark Matter candidate, the Yukawa sector in

non-supersymmetric and supersymmetric models is similar.
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In this case, this model has the interesting feature of automatic connection between b− τ
unification and large atmospheric mixing angle in the type II seesaw. From MνL ∝ Y126 ,

one has MνL ∝MD −ME. as shown in [73]. This fact has inspired the careful study of the

analogous supersymmetric version where mτ ' mb at the GUT scale works rather well. In

the non-supersymmetric theory, b− τ unification fails badly, mτ ∼ 2mb [101]. The realistic

theory will require a Type I seesaw, or an admixture of both possibilities.

Suppose now that we choose instead 120H [82]. Since Y120 is antisymmetric, this means

only 3 new complex couplings on top of Y126. On gets in this case

MD = M1 +M2 , MU = c1M1 + c2M2 , (145)

ME = −3M1 + c3M2 , MνD = −3c1M1 + c4M2

where M1 and c1 are defined in (142),(143), and:

M2 = Y120

(
〈2, 2, 1〉d120 + 〈2, 2, 15〉d120

)
, c2 =

〈2, 2, 1〉u120 + 〈2, 2, 15〉u120

〈2, 2, 1〉d120 + 〈2, 2, 15〉d120

,

c3 =
〈2, 2, 1〉d120 − 3〈2, 2, 15〉d120

〈2, 2, 1〉d120 + 〈2, 2, 15〉d120

, c4 =
〈2, 2, 1〉u120 − 3〈2, 2, 15〉u120

〈2, 2, 1〉d120 + 〈2, 2, 15〉d120

. (146)

It is easy to see that again there is a need to complexify the Higgs fields, by arguments

similar to the case of 10H .

In order to obtain algebraic expressions, from which a clearer physical meaning can be

extracted, one can restrict the analysis to the second and third generations. Later, numerical

studies could include the effects of the first generation as a perturbation. In the basis where

M1 is diagonal, real and non-negative, for the two-generation case one gets:

M1 ∝

 sin2 θ 0

0 cos2 θ

 (147)

and the most general charged fermion matrix can be written as:

Mf = µf

 sin2 θ i(sin θ cos θ + εf )

−i(sin θ cos θ + εf ) cos2 θ

 , (148)

where f = D,U,E stands for charged fermions and εf vanishes for negligible second genera-

tion masses. In other words |εf | ∝ mf
2/m

f
3 . Furthermore the real parameter µf sets the third

generation mass scale. By calculating up to leading order in |εf |, we have to the following

interesting predictions [82]:
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1. type I and type II seesaw lead to the same structure

M I
N ∝M II

N ∝M1 (149)

so that in the selected basis the neutrino mass matrix is diagonal. We see that the

angle θ has to be identified with the leptonic (atmospheric) mixing angle θA up to

terms of the order of |εE| ≈ mµ/mτ . For the neutrino masses we obtain from (147)

m2
3 −m2

2

m2
3 +m2

2

=
cos 2θA

1− sin2 2θA/2
+O(|ε|) (150)

Exercise: Derive this formula.

This equation points to an intriguing correlation: the degeneracy of neutrino masses

is measured by the maximality of the atmospheric mixing angle.

2. the ratio of tau and bottom mass at the GUT scale is given by:

mτ

mb

= 3 +O(|ε|) (151)

This is not correct in principle, the extrapolation in standard model gives mτ ≈ 2mb.

However, several effects modify this conclusion, such as for example the inclusion of

the first generation or the running of Yukawa couplings. We would in any case expect

that mb comes out as small as possible.

3. the quark mixing is found to be:

|Vcb| = | cos 2θA (εD − εU)|+O(|ε2|) (152)

This equation demonstrates the successful coexistence of small and large mixing angles.

In order for it to work quantitatively, | cos 2θA| should be as large as possible, i.e. θA

should be as far as possible from the maximal value 45◦. To make a definite numerical

statement, again, the effects from the first generation and the loops have to be included.
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D. Supersymmetric case

In supersymmetry 10H is necessarily complex and the bidoublet (1, 2, 2) in 10H contains

the two Higgs doublets of the MSSM, with the vevs vu and vd in general different: tan β ≡
vu/vd 6= 1 in general. In order to study the physics of SO(10), we need to know what the

theory is, i.e. its Higgs content. There are two orthogonal approaches to the issue, as we

discuss now.

Small representations. The idea: take the smallest Higgs fields (least number of fields,

not of representations) that can break SO(10) down to the MSSM and give realistic fermion

masses and mixings. The following fields are both necessary and sufficient

45H , 16H + 16H , 10H (153)

It all looks simple and easy to deal with, but the superpotential becomes extremely compli-

cated. First, at the renormalizable level it is too simple. The pure Higgs and the Yukawa

superpotential at the renormalizable level take the form

WH = m45452
H +m1616H16H + λ116HΓ216H45H

m10102
H + λ216HΓ16F10H + λ316HΓ16H10H (154)

Wy = y1016FΓ16F10H (155)

where Γ stands for the Clifford algebra matrices of SO(10), Γ1...Γ10, and the products

of Γ’s are written in a symbolic notation (both internal and Lorentz charge conjugation are

omitted).

Clearly, bothWH andWy are insufficient. The fermion mass matrices would be completely

unrealistic and the vevs 〈45H〉, 〈6H〉, 〈16H〉 would all point in the SU(5) direction. Thus,

one adds non-renormalizable operators

∆WH =
1

MPl

[
(452

H)2 + 454
H + (16H16H)2 + (16HΓ216H)2 + (16HΓ416H)2

+(16HΓ16H)2 + (16HΓ516H)2 + {16H → 16H}

+16HΓ416H452
H + 16HΓ316H45H10H + {16H → 16H}

]
(156)

∆Wy =
1

MPl

[
16FΓ16F 16HΓ16H + {16H → 16H}

16FΓ316F45H10H + 16FΓ516F16HΓ516H
]

(157)
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where I take for simplicity all the couplings to be unity; there are simply too many of them.

The large number of Yukawa couplings means very little predictivity.

The way out is to add flavor symmetries and to play the texture game and thus reduce

the number of couplings. This in a sense goes beyond grand unification and appeals to new

physics at MPl and/or new symmetries.

To me, maybe the least appealing aspect of this approach is the loss of R (matter) parity

due to 16H and 16H ; it must be postulated by hand as much as in the MSSM.

On the positive side, it is an asymptotically free theory and one can work in the pertur-

bative regime all the way up to MPl. While this sounds nice, I am not sure what it means

in practice. It would be crucial if you were able to make high precision determination of

MGUT or mT , the mass of colored triplets responsible for d = 5 proton decay. The trouble is

that the lack of knowledge of the superpotential couplings is sufficient even in the minimal

SU(5) theory to prevent this task; in SO(10) it gets even worse.

Maybe more relevant is the fact that in this scenario MR 'M2
GUT/MPl ' 1013−1014GeV ,

which fits nicely with the neutrino masses via seesaw. Furthermore, seesaw can be considered

”clean”, of the pure type I, since the type II effect is suppressed by 1/MPl. Most important,

the mb ' mτ relation from (155) is maintained due to small 1/MPl effects relevant only for

the first two generations.

1. Large representations

The non-renormalizable operators in reality mean invoking new physics beyond grand

unification. This may be necessary, but still, one should be more ambitious and try to use

the renormalizable theory only. This means large representations necessarily: at least 126H

is needed in order to give the mass to νR (in supersymmetry, one must add 126H). The

consequence is the loss of asymptotic freedom above MGUT , the coupling constants grow

large at the scale ΛF ' 10MGUT .

Once we accept large representations, we should minimize their number. The minimal

theory contains, on top of 10H , 126H and 126H , also 210H [83–86] with the decomposition

210H = (1, 1, 1)− + (15, 1, 1)+ + (15, 1, 3) + (15, 3, 1)

+(6, 2, 2) + (10, 2, 2) + (10, 2, 2) (158)
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where the -(+) subscript denotes the properties of the color singlets under charge conjuga-

tion.

The Higgs superpotential is remarkably simple

WH = m210(210H)2 +m126126H126H +m10(10H)2 + λ(210H)3

+η126H126H210H + α10H126H210H + α10H126H210H (159)

and the Yukawa one even simpler

WY = y1016FΓ16F10H + y12616FΓ516F126H (160)

Remarkably enough, this may be sufficient, without any higher dimensional operators; how-

ever, the situation is not completely clear.

There is a small number of parameters: 3 + 6x2 = 15 real Yukawa couplings, and 11 real

parameters in the Higgs sector. In this sense the theory can be considered as the minimal

supersymmetric GUT in general [86]. As usual, I am not counting the parameters associated

with the SUSY breaking terms.

The nicest feature of this program (and the best justification for the use of large repre-

sentations) is the following. Besides the 〈(10, 1, 3)〉 which gives masses to the νR’s, also the

〈(15, 2, 2)〉 in 126H gets a vev [76, 84]. Approximately

〈15, 2, 2〉126 '
MPS

MGUT

〈1, 2, 2〉 (161)

with MPS = 〈15, 2, 2〉 being the scale of SU(4)c symmetry breaking. In SUSY, MPS ≤MGUT

and thus one can have correct mass relations for the charged fermions.

What is lost, though, is the b − τ unification, i.e. with 〈(15, 2, 2)〉126 6= 0, mb = mτ at

MGUT becomes an accident. However, in the case of type II seesaw, there is a profound

connection between b − τ unification and a large atmospheric mixing angle. The fermionic
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mass matrices are obtained from (160)

Mu = vu10y10 + vu126y126 ,

Md = vd10y10 + vd126y126 ,

Me = vd10y10 − 3vd126y126 ,

MνD = vu10y10 − 3vu126y126 ,

MνR = y126〈(10, 1, 3)〉 ,

MνL = y126〈(10, 3, 1)〉 ,

(162)

where 〈(10, 3, 1)〉 ' M2
W/MGUT provides a direct (type II) seesaw mass for light neutrinos.

The form in (162) is readily understandable, if you notice that 〈(1, 2, 2)〉 is a SU(4)c singlet

with mq = m`, and 〈(15, 2, 2)〉 is a SU(4)c adjoint, with m` = −3mq The vevs of the

bidoublets are denoted by vu and vd as usual.

Now, suppose that type II dominates, or Mν ∝ y126 ∝Me −Md, so that

Mν ∝Me −Md (163)

Let us now look at the 2nd and 3rd generations first. In the basis of diagonal Me, and for

the small mixing εde

Mν ∝

mµ −ms εde

εde mτ −mb

 (164)

obviously, large atmospheric mixing can only be obtained for mb ' mτ [73].

Exercise: Prove that the above neutrino mass matrix requires b− τ unification in order

to lead to a large mixing angle. Use the fact that the second generation masses are small in

comparison with the third generation ones.

Of course, there was no reason whatsoever to assume type II seesaw. Actually, we should

reverse the argument: the experimental fact of mb ' mτ at MGUT , and large θatm seem to

favor the type type II seesaw. It can be shown, in the same approximation of 2-3 generations,

that type I cannot dominate: it gives a small θatm [74]. This gives hope to disentangle the

nature of the seesaw in this theory. As a check, it can be shown that the two types of seesaw

are really inequivalent [74].
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I wish to stress an important feature of this programme. Since 126 (126) is invariant under

matter parity, R parity remains exact at all energies and thus the lightest supersymmetric

particle is stable and a natural candidate for the dark matter.

2. Mass scales

In SO(10) we have in principle more than one scale above MW (and ΛSUSY ): the GUT

scale, the Pati-Salam scale where SU(4)c is broken, the LR scale where parity (charge

conjugation) is broken, the scales of the breaking of SU(2)R and U(1)B−L. Of course, these

may be one and the same scale, as expected with low-energy supersymmetry. This solution

is certainly there, since the gauge couplings of the MSSM unify successfully and encourage

the single step breaking of SO(10).

Is there any room for intermediate mass scales in SUSY SO(10)? It is certainly appealing

to have an intermediate seesaw mass scale MR, between 1012 − 1015GeV or so. In the non-

renormalizable case, with 16H and 16H , this is precisely what happens: MR ' cM2
GUT/MPl '

c(1013−1014)GeV . In the renormalizable case, with 126H and 126H , one needs to perform a

renormalization group study using unification constraints. While this is in principle possible,

in practice it is hard due to the large number of fields. The stage has recently been set, for

all the particle masses were computed [96, 97], and the preliminary studies show that the

situation may be under control [98]. It is interesting that the existence of intermediate mass

scales lowers the GUT scale [96, 99], allowing for a possibly observable d = 6 proton decay.

Notice that a complete study is basically impossible. In order to perform the running, you

need to know particle masses precisely. Now, suppose you stick to the principle of minimal

fine-tuning. As an example, you fine-tune the mass of the W and Z in the SM, then you

know that the Higgs mass and the fermion masses are at the same scale

mH =

√
λ

g
mW , mf =

yf
g
mW (165)

where λ is a φ4 coupling, and yf an appropriate fermionic Yukawa coupling. Of course, you

know the fermion masses in the SM model, and you know mH ' mW .

In an analogous manner, at some large scale mG a group G is broken and there are usually

a number of states that lie at mG, with masses

mi = αimG (166)
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where αi is an approximate dimensionless coupling. Most renormalization group studies

typically argue that αi ' O(1) is natural, and rely on that heavily. In the SM, you could

then take mH ' mW , mf ' mW ; while reasonable for the Higgs, it is nonsense for the

fermions (except for the top quark).

In supersymmetry all the couplings are of Yukawa type, i.e. self-renormalizable, and thus

taking αi ' O(1) may be as wrong as taking all yf ' O(1). While a possibly reasonable

approach when trying to get a qualitative idea of a theory, it is clearly unacceptable when

a high-precision study of MGUT is called for.

3. Proton decay

As you know, d = 6 proton decay gives τp(d = 6) ∝ M4
GUT , while (d = 5) gives τp(d =

5) ∝M2
GUT . In view of the discussion above, the high-precision determination of τp appears

almost impossible in SO(10) (and even in SU(5)).

You may wonder if our renormalizable theory makes sense at all. After all, we are ignoring

the higher dimensional operators of order MGUT/MPl ' 10−2−10−3. If they are present with

the coefficients of order one, we can forget almost everything we said about the predictions,

especially in the Yukawa sector. However, we actually know that the presence of 1/MPl

operators is not automatic (at least not with the coefficients of order 1). Operators of the

type (in symbolic notation)

Op
5 =

c

MPl

164
F (167)

are allowed by SO(10) and they give

Op
5 =

c

MPl

[(QQQL) + (QcQcQcLc)] (168)

These are the well-known d = 5 proton decay operators, and for c ' O(1) they give τp '
1023yr. Agreement with experiment requires

c ≤ 10−6 (169)

Exercise: Hard. Prove the above result. Use the fact that the supersymmetric operator of

the type QQQL corresponds to an effective interaction QLQ̃Q̃ and then use the interactions

with gauginos to transform Q̃Q̃ into QQ in order to create a proton decay operator QQQL.

It happens at the one loop level.
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Could this be a signal that 1/MPl operators are small in general? Alternatively, you need

to understand why just this one is to be so small. It is appealing to assume that this may

be generic; if so, neglecting 1/MPl contributions in the study of fermion masses and mixings

is fully justified.
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VIII. *MAJORANA NEUTRINOS AND LEPTON NUMBER VIOLATION

Majorana neutrino mass implies ∆L = 2 processes:

1. neutrinoless double β decay

2. same sign dilepton par production at colliders [37]

A. Neutrinoless double β decay

This is the usual text-book example of ∆L = 2 and is often considered a probe of

Majorana mν . However, the Majorana case needs a completion of the SM and 0ν2β depends

in general on the completion. This in general brings new contributions to the neutrinoless

double decay which may dominate over the neutrino one. The idea that new physics may

be behind 0ν2β is more than fifty years old [102]. A simple and clear example is provided

by L − R symmetric theories with low MR scale in which case there are new contributions

to 0ν2β. The dominant one is due to the WR exchange and right-handed neutrinos N as in

Figure 4.

It gives

(0ν2β)RR ∝
1

M4
WR

(
1

MN

)ee
(170)

to be compared with the usual WL contribution

(0ν2β)LL ∝
1

M4
WL

mee
ν

p2
(171)

where we assume gL ' gR and p is the momentum exchange p ' 100 MeV.

We have
(0ν2β)RR
(0ν2β)LL

'
(
MWL

MWR

)4
p2

mee
ν

(
1

MN

)ee
(172)

For MR in the few TeV region and MN �TeV, the (RR) contribution tends to dominate

over the (LL) one, and clearly right-handed neutrinos should not be too light.

Since mν = 0 when yD = 0 and 〈∆L〉 = 0, you can imagine a situation when neutrino

mass is arbitrarily small, but (0ν2β)RR 6= 0 due to the N exchange. This is evident from

the Fig. 6

In other words, WR at LHC suggests strongly that new physics may dominate 0ν2β as

argued originally in [34]. What is remarkable is that the opposite is true, too: the new
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FIG. 5: Neutrinoless double β decay through WR and N
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FIG. 6: Neutrinoless double beta decay. The canonical contribution (left) from light neutrino mass

and the new physics part (right), with |M ee
N | defined in Eq. (177). The mixing angles are fixed at

{θ12, θ23, θ13} = {35◦, 45◦, 7◦}, while the Dirac and Majorana phases vary in the interval {0, 2π}.

This figure is taken from [103].

physics as a source of 0ν2β should be accessible to LHC in order to do the job. This is

evident if one writes the new physics contribution in a natural form

ANP ∝ G2
F

M4
W

Λ5
, (173)

where Λ is the scale of new physics. Compare this with the conventional neutrino mass

source of 0ν2β, in which case the transition amplitude is proportional to

Aν ∝ G2
F

mee
ν

p2
, (174)

where mee
ν is the 1-1 element of the neutrino mass matrix mν and p ≈ 100 MeV a measure

of the neutrino virtuality. Clearly, the new physics enters the game at Λ ∼ TeV. This fact
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alone provides a strong motivation to pursue this line of thought as was done recently in

[103] which we follow closely.

In what follows we neglect the tiny WL-WR mixing of O(MW/MWR
)2 . 10−3 and contri-

butions coming from the bidoublet through the charged Higgs, because of its heavy mass of

at least 10 TeV [38]. In this case we are left with only two extra contributions and with an

effective Hamiltonian given by (the contribution from the left-handed triplet is completely

negligible)

HNP = G2
FV

2
Lej

[
1

mNj

+
2 mNj

m2
∆++
R

]
M4

W

M4
WR

JRµJ
µ
R eRe

c
R , (175)

where JRµ is the right-handed hadronic current. Making use of the LFV constraint

mN/m∆ � 1 one can neglect the ∆++
R contribution and write the total decay rate as

Γ0νββ

ln 2
= G ·

∣∣∣∣Mν

me

∣∣∣∣2
(
|mee

ν |2 +

∣∣∣∣∣p2 M
4
W

M4
WR

V 2
Lej

mNj

∣∣∣∣∣
2)

, (176)

where G is a phase space factor, Mν is the nuclear matrix element relevant for the light

neutrino exchange, while p measures the neutrino virtuality and accounts also for the ratio

of matrix elements of heavy and light neutrinos.

In order to illustrate the impact of the Dirac and Majorana phases on the total decay

rate, we show in the left frame of Fig. 6 (taken from [103]) the well known absolute value of

mee
ν which measures the standard neutrino mass contribution [104], while the corresponding

effective right-handed counterpart,

M ee
N = p2(MW/MWR

)4V 2
Lej/mNj , (177)

is shown separately in the right frame. This plot has been made using Eqs. (58) and (59)

with p = 190 MeV and taking the entire range of VL to be allowed by LFV, see Fig. 4.

A striking feature which emerges is the reversed role of neutrino mass hierarchies. While

in the case of neutrino mass behind neutrinoless double beta decay the normal hierarchy

matters less and degeneracy is most promising, in the case of new physics it is normal

hierarchy that dominates and degeneracy matters less. Even more striking is a situation

in the far left corner, when the mass of the lightest neutrino species becomes smaller and

smaller. This region is interesting for cosmological considerations which keep lowering the

sum of neutrino masses. Moreover, recent studies of the BBN seem to be pointing towards

four (even five) light neutrino species [105] with masses in the sub-eV region. Four light
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FIG. 7: Effective 0ν2β mass parameter |mee
ν+N |, a measure of the total 0ν2β rate including contri-

butions from both left and right currents. This figure is given in [103].

neutrino species at the BBN would force the lightest right-handed neutrino to lie in the

sub-eV region, which, from (58), would imply effectively massless lightest neutrino. Notice

that in this theory the light-right handed neutrino is almost as equally abundant as the

left-handed species, for it decouples very late (in the case of sterile neutrinos, without gauge

interactions, one has to rely on tiny Yukawa couplings, a long shot.

In the case of the standard neutrino mass source of the 0ν2β, this portion of the parameter

space is hopeless in the case of normal hierarchy, with some hope for the inverse hierarchy,

if the experiments get bellow 0.1 eV for mee
ν . On the contrary, with the new physics of WR

being the culprit, the situation is highly favorable, and the present experimental situation

already sets strong limits on the masses of the other two right-handed neutrinos. This can

be great news for this theory, and could serve as a crucial check of its validity.

The total 0ν2β rate is governed by the effective mass parameter

|mee
ν+N | = (|mee

ν |2 + |M ee
N |2)1/2 (178)

i.e. a quantity that supersedes the standard matrix element mee
ν in the parameter space

accessible to LHC. In Fig. 7, taken again from [103], we show |mee
ν+N | as a function of the

lightest neutrino mass. We have already stressed in the introduction the reversed role of

the neutrino mass hierarchies. In the case of the right-handed contribution, the normal
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hierarchy (NH) prevails over the inverted (IH) in wide regions of the parameter space and

furthermore for both hierarchies new physics can win over the neutrino mass as the source

of 0ν2β. Moreover, Fig. 7 shows that there is no more room for cancellations, present in the

individual contributions in Fig. 6. On the upper horizontal axis, we also display the lightest

of the heavy neutrinos. As one can see, the range of mlightest
N is easily below 100 GeV which

would lead to interesting displaced vertices at LHC [38].

It is thus crucial to have a direct measure of lepton number violation which can probe the

source of neutrino Majorana mass. This is provided by the same sign dilepton production

at colliders as we discuss below.

B. Same Sign Lepton Pairs at Colliders

We discuss here two illustrative example: the left-right symmetric model and the minimal

realistic SU(5) model. The former is a custom-fit theory of neutrino mass, the one that let

to neutrino masses and the seesaw mechanism and offers an exciting signature of both parity

restoration and the discovery of right-handed neutrinos. Its only setback is the lack of the

handle of its scale, as opposed to the latter theory that predicts light fermion triplet, at

LHC energies.

1. Left-Right symmetric theory

We have just seen that ββ0 is obscured by various contributions which are not easy to

disentangle. We need some direct tests of the origin of ∆L = 2, i.e. these-saw mechanism.

This comes about from possible direct production of the right-handed neutrinos through

a WR production. The crucial point here is the Majorana nature of N : once produced

at decays equally often into leptons and antileptons. This led us [37] to suggest a direct

production of the same sign di-leptons at colliders as a manifestation of ∆L = 2. The most

promising channel is ``+2 jets as seen form Fig.8.

One can also imagine a production of N through its couplings to WL (proportional to

yD), but this is a long shot. It would require large yD and large cancellations among the in

order to have small mν . This could be achieved in principle by fine-tuning, but is not the

seesaw mechanism.
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FIG. 8: Production of lepton number violating same sign di-leptons at colliders through WR and

N

The crucial characteristics are

1. no missing energy which helps to fight the background

2. by measuring energies and momenta of the final states one can reconstruct both the

mas of WR and of the right-handed neutrino

3. the process can be amplified by the WR resonance

The main background comes from bb̄+ jets, but can be fought against with the usual cuts

of large pt for leptons and jets. Also important is tt̄+ jets, which is less present but more

resistent to large pT cuts. Careful and complete studies were performed with encouraging

results: one can easily discover WR at the LHC up to MWR
' 4 TeV and mN ' 100 GeV

-TeV for integrated luminosity of 30fb−1 [87]. In the Fig. 9, due to F. Nesti, the situation

is shown for smaller integrated luminosity of 8fb−1 .

Let us now see what happens in the type II seesaw. In this case, the flavor dependence of

VR can be determined precisely through these same sign lepton pair channels; thus, Eq. (59)

can be falsified in the near future. Moreover, if LHC will measure the heavy right-handed

masses in the same process one could perform crucial consistency checks of type II seesaw

[103], such as
m2
N2
−m2

N1

m2
N3
−m2

N1

=
m2
ν2
−m2

ν1

m2
ν3
−m2

ν1

' ±0.03 , (179)

where the right-hand side is determined by oscillation data and the ± signs corresponds to

normal/inverted hierarchy case. Another eloquent relation among the mass scale probed in
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FIG. 9: The expected number of events at the 14 TeV LHC as a function of energy (GeV) for

L = 8fb−1 (courtesy of F. Nesti) where MR (TeV) is taken to be: (1.8; 2, 0; 2.4; 2.6; 3, 0; 3.4). For

details see [38].

cosmology, atmospheric neutrino oscillations and LHC was derived in [103]

mcosm =
∑

mνi ' 50 meV×
∑

imNi√
|m2

N3
−m2

N2
|
. (180)

To summarize, the measurement of the heavy mass spectrum can easily invalidate the model.

Type II can also exist by itself in which case it can lead to rather interesting signatures

at the colliders if the ∆ triplets are light enough. In particular, it can lead to the production

of doubly charged scalars that decay into same sign di-lepton pairs [88] as in Fig.10.

Notice that ∆++ and ∆−− decay through the Yukawas y∆, these decays thus probe the

neutrino mass matrix [89]

Mν = y∆〈∆〉 (181)

One can derive the sum rules for the flavor structure of Fig.10. Of course, this is valid

only when these decays dominate over the decays with W bosons through〈∆〉.
The relative strength of ∆−− → `` and ∆−− → W−W− depends on y∆. From

Γ(∆−− → ``) ' y2
∆

8π
M∆ (182)
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FIG. 10: Production of a pair of double charged Higgs scalars and subsequent decay into pairs of

same sign di-leptons

and

Γ(∆−− → W−W−) ' g2〈∆〉2
8πM∆

(183)

for M∆ �MW one gets

B(∆−− → ``) ≡ Γ(∆−− → ``)

Γ(∆−− → W−W−)
' y2

∆M
2
∆

g2〈∆〉2 (184)

Thus B(∆−− → ``) ≥ 1 requires that the vev of ∆ be as small and y∆ large. Ideally,

observing both decays would establish SU(2) gauge triplet property of ∆ and could measure

the form of the neutrino mass matrix. The widely separated di-lepton pairs in the case of

B(∆−− → ``) ≥ 1 provide a clean manifestation of the Type II seesaw mechanism and

allow for the discovery of ∆++ with M∆ ≤ 800GeV. This can be boosted even more if one

manages to produce the heavy neutral gauge boson ZR, for then one can sit at its resonance.

In any case, even the seesaw is not of type II, the possibility of the discovery of the doubly

charged ∆ scalars remains feasible. It is important to perform a complete analysis of the

L− R symmetric model at LHC. For an earlier attempt see e.g. [90]. In short, both type I

and II could lead to exciting ∆L = 2 signatures at LHC, if WR and N and/or ∆ are light

enough. But, as will be discussed later, in predictive grand unified theories such as minimal

SO(10), they are expected to be rather heavy, out of reach for LHC.
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FIG. 11: The same sign dilepton signature of type III seesaw through the production of the charged

and neutral components of a fermion triplet TF

2. SU(5) theory with type I and III

One can ask the same question in the case of Type III seesaw. As we said, one would

need at least the fermionic triplets in order to have at least two massive neutrinos, one could

have a hybrid situation of of Type I and Type III seesaw,with a heavy fermionic singlet (N)

and triplet (T ). This case is particularly interesting, since it emerges naturally in the SU(5)

grand unified theory. Again, the process of interest for LHC is a production of same sign

di-leptons (but now with 4 jets) as in Fig.11

The main point here is that in the minimal SU(5) theory augmented by an adjoint

fermionic representation 24F the fermion triplet TF is predicted to lie below TeV , and thus

the above process is a realistic possibility at colliders such as LHC. The triplet TF can be

produced through gauge interactions (Drell-Yan)

pp→ W± +X → T±T 0 +X

pp→ (Z or γ) +X → T+T− +X

with the cross section for the T pair production in Fig. 12.

The best channel is like-sign di-leptons + jets

BR(T±T 0 → l±i l
±
j + 4jets) ≈ 1

20
× |yiT |2|yjT |2

(
∑

k |ykT |2)2

Same couplings yiT contribute to ν mass matrix and T decays, so that T decays can serve

to probe the neutrino mass matrix [66] and the nature of the hierarchy of neutrino masses.
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FIG. 12: Total cross section for pp → T±T 0 production and decay at the LHC at
√
S = 14 TeV

(thick curves) and 7 TeV (thin curves) versus the heavy lepton mass. The solid curves (top) are for

the production rate before decay or cuts. The dotted (middle) curves includes branching fraction

of the leading channels for the case of inverse hierarchy. The dashed (lower) curves further include

the selection cuts. For details see [67].

With proper cuts SM backgrounds appear under control [106]. With integrated luminosity

of 10 fb−1 one could find the fermionic triplet T for MT up to about 400 GeV.

The light triplet fermion also plays an important role in lepton flavor violation, especially

in µ→ e conversion in nuclei, which is induced at the tree level and could be observed even

for a triplet out of LHC reach [107]. As we saw in section VI E, the triplet decay width into

the k-th lepton is proportional to

ΓT ∝MT |ykT |2, (185)

The same couplings yiT contribute thus to ν mass matrix and T decays, so that T decays

can serve to probe the neutrino mass matrix [67], [65] and the nature of the hierarchy

of neutrino masses. The main reason for this is the fact that the model predicts only two

massive neutrinos, the lightest one effectively massless. Let us give an example of the inverse
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hierarchy for small θ13 (taken to be zero). One finds [66]

BRτ

BRµ

= tan2 θ23 (186)

where BRτ and BRµ are branching ratios for the T decay into tau leptons and muons.

Before concluding, it should be mentioned that one can also add a 15-dimensional scalar

as an alternative of curing the minimal SU(5) theory. This leads instead to the type II

seesaw with possibly light lepto-quarks and its own interesting phenomenology [108].

IX. SUMMARY AND OUTLOOK

The smallness of neutrino mass is an intriguing fact that gives hope of being a window

into a new physics beyond the standard model. This crucially depends on the nature of

neutrino mass, i.e. whether it is Dirac or Majorana. In the former case, the standard

model is a complete theory and although the smallness of neutrino mass is attributed to

the smallness of Dirac Yukawa couplings. True, it is not explained, but strictly speaking

there may be no new physics, the same way that there may be no new physics behind the

smallness of electron mass. In the limit of small Yukawas one has more symmetry, and thus

small Yukawas are technically natural, protected from high energy physics. The Dirac case

thus gives no clue where to look for a new physics. Of course, one can always search for

horizontal symmetries as the explanation of small Yukawas, but here there is a danger of

only changing the language.

The Majorana case on the other hand provides a clear window into new physics for the

MSM with Majorana neutrino mass is not a complete theory. At the same time, this case

implies a violation of lepton number through a neutrinoless double beta decay as is well

known and the possible production of the same sign di-leptons, less known but becoming a

new hot field in itself. The completion of the MSM that produces small neutrino Majorana

mass results in the celebrated seesaw mechanism which comes in three different varieties. In

order to be predictive, though, the seesaw mechanism needs a theory behind, for otherwise it

is simply a linguistic variation on the effective d=5 operator that we saw necessarily describes

neutrino mass after the new states are integrated out. One important theory which leads

to both type I and II seesaw is based on LR symmetry, and has been a principle source

of neutrino mass and seesaw. If the scale of LR symmetry breaking were to be in the TeV
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region, one would have a possibility of seeing both the parity restoration and the origin of the

neutrino mass through the production of a right handed charged boson and right-handed

neutrinos. Similarly, one could in principle produce the scalar triplet responsible for the

type II seesaw. The scale of LR breaking can be predicted only in grand unification and in

simple, predictive models it is quite large, far above the TeV scale of colliders. Still, one

may be able to connect the values of neutrino masses and mixings with the predictions for

the branching ratios of proton decay an thus have a check on the theory, albeit indirect.

On the other hand, the type III seesaw finds its natural realization in SU(5) grand

unified theory, when the minimal model of Georgi and Glashow is augmented by an adjoint

fermion representation. This allows for the unification of gauge couplings and provides a

hybrid type I and III seesaw. One predicts one massless neutrino and more important a

light weak triplet fermion, with a mass below TeV. The decays of the triplet probe neutrino

masses and mixings through the lepton number violating production of same sign di-leptons

accompanied by four jets. The hope of finding the origin of neutrino mass becomes feasible

at colliders such as LHC.

In summary, I tried to argue in these lectures in favor of Majorana masses of neutrinos,

and the possibility of seeing its origin through lepton number violation or the connection

with proton decays. The lepton number violation will be searched for in the new generation

of neutrinoless double beta decay and at LHC. Hopefully, a serious effort will be put in

the next generation of proton decay experiments; they could be simultaneously a probe of

baryon number violation in nature and an origin of neutrino masses and mixings.

Appendices

Appendix A: Dirac and Majorana masses

The irreducible spin 1/2 representations of the Lorentz group are the two-component left-

and right-handed chiral fermion Weyl fields uL and uR, which transform under the Lorentz

group as

uL,R → ΛL,R uL,R (A1)
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with

ΛL ≡ ei~σ/2(~θ+i~φ)

ΛR ≡ ei~σ/2(~θ−i~φ) (A2)

The three Euler angles ~θ stand for rotations, ad ~φ denotes the boosts. The spinors ψL and

ψR transform the same under the rotations, but in an opposite manner under the boosts.

It is straightforward to show that the following bilinear combinations are Lorentz invariant

(M) uTLiσ2uL and uTRiσ2uR (Majorana type)

(D) u†LuR and u†RuL (Dirac type) (A3)

Historically, the Dirac type came first, but in a sense the Majorana invariant is even more

fundamental for it needs only one species of fermions.

To bridge the gap with Dirac four-component fermions, we need the Dirac algebra

{γµ, γν} = 2gµν gµν = diag(1,−1,−1,−1) (A4)

with

γi =

 0 σi

−σi 0

 , γ0 =

 0 12

12 0

 (A5)

γ5 = iγ1γ2γ3γ0 =

 12 0

0 −12

 (A6)

where

Σµν =
1

4i
[γµ, γν ] (A7)

generate Lorentz algebra and where γ5 has the properties

γ2
5 = 1, [γ5,Σµν ] = 0, {γ5, γµ} = 0. (A8)

One can define L and R projectors

PL.R ≡
1± γ5

2
(A9)

A four component spinor ψ transforms under Lorentz transformations

ψ → Λψ (A10)
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where

Λ ≡ eiΣµνθ
µν

(A11)

One can write

ψ ≡ ψL + ψR (A12)

with

ψL = PLψ ψR = PRψ (A13)

The ΛL,R introduced in Eq. (A2) are simply

ΛL,R = PL,RΛ (A14)

The Dirac charge conjugation, defined through

CTγµC = −γTµ , CT = −C (A15)

is with my conventions

C = iγ2γ0 (A16)

In other words, the Majorana mass term can be written as

(M) mM(ψTLCψL + h.c.) (A17)

and the Dirac one as

(D) mD(ψ̄LψR + ψ̄RψL) ≡ mDψ̄DψD ψD ≡ ψL + ψR (A18)

This in turn gives

ψD =

 uL

uR

 (A19)

since

ψL =

 uL

0

 and ψR =

 0

uR

 (A20)

It is convenient to work with left-handed antiparticles instead of right-handed particles

(ψC)L ≡ Cψ̄TR (A21)
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in which case one can write a mass matrix for ψL and (ψC)L in he Majorana notation

(ψT1 Cψ2)  mL mD

mD mR

 (A22)

where mL and mR are the Majorana mass terms of ψL and ψR respectively. The case of a

pure Dirac fermion simply means mL = mR = 0.

If neutrino mass is of the Majorana type on the other hand, it will imply a violation of

the lepton number and a new rich physics associated with it.

Appendix B: Majorana spinors: Feynman rules

Take a two-component spinor with left-handed chirality ψL with the following Lagrangian

LM = iψ̄Lγ
µ∂µΨL −

(mM

2
ψTLCψL + h.c.

)
(B1)

where the subscript M indicates the Majorana nature of the mass term. In order to bridge

the gap with the familiar 4-component Dirac case, introduce by analogy

ψM ≡ ψL + Cψ̄TL (B2)

or

ψM =

 uL

iσ2u
∗
L

 (B3)

In other words, Majorana spinor is real and can denote only a neutral particle such as

neutrino. This is manifest in the original Majorana representation [29].

From

ψ̄Mγ
µ∂µψM = 2ψ̄Lγ

µ∂µψL (B4)

and

ψ̄MψM = ψTLCψL + h.c. (B5)

we get

LM =
1

2

[
iψ̄Mγ

µ∂µ −mM ψ̄MψM
]

(B6)

Two important facts emerge

1. mM is the (Majorana) mass of ψM
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2. one can use the usual Dirac case Feynman rules (the only exception is a factor of 1/2

for a closed loop due to the reduced number of degrees of freedom).

Appendix C: Seesaw mechanism

In the SM, if we add a right-handed neutrino, the leptonic sector is given by ν

e


L

, eR, νR (C1)

The corresponding Yukawa couplings are

LY = yD (ν̄ ē)L iσ2 Φ∗νR +
MR

2
νTR C νR + h.c. (C2)

where we include the Majorana mass term MR for the right-handed neutrino since it is a

SM singlet.

As above, let us introduce Majorana spinors

νM ≡ νL + C ν̄TL , NM ≡ νR + Cν̄TR (C3)

One then gets, using ν̄MNM ≡ N̄MνM

LY =
1

2

(
iν̄Mγ

µ∂µνM + iN̄Mγ
µ∂µNM

)
+

1

2
mD

(
ν̄MNM + N̄MνM

)
+
MR

2
N̄MNM (C4)

where mD ≡ yDv and v = 〈φ0〉 is the vev of the neutral component of Φ.

One arrives at the well-known mass matrix

νM

NM

 0 mD

mD MR

 (C5)

In the limit MR � mD, called the seesaw limit, the eigenvalues of this matrix simplify to

mν ' m1 ' −
m2
D

MR

mN ' m2 'MR (C6)

and the eigenstates are

ν1 ' νM + εNM

ν2 ' NM − ε νM (C7)

where ε ' MD/MR. Throughout these lectures we ignore ε and for simplicity we denote ν1

by ν and ν2 by N .
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Appendix D: SU(N) group theory

On a fundamental N-dimensional complex representation Φ, the SU(N) group acts as

Φ→ UΦ, U †U = 1, det(U) = 1 (D1)

and U can be written as

U = e−iθaTa a = 1..N2 − 1 (D2)

where the group generators Ta satisfy

Ta = T †a , T r(Ta) = 0, [Ta, Tb] = ifabcTc (D3)

where fabc are the group structure constants. There is also a complex conjugate representa-

tion

Φ∗ → U∗Φ∗ (D4)

and an (N2 − 1)-dimensional adjoint representation

A→ UAU † = A− iθa[Ta, A] + ... (D5)

In other words, the generators act on A as commutators. One can write A = AaTa, so that

Aa transforms under a small group rotation as

Aa → Aa + fabcθbAc (D6)

Examples of fields transforming as the adjoint representation are the gauge bosons A of

SU(N) and the heavy scalars Σ employed to break the grand unified symmetry. The reason

for the latter is the fact that under a unitary transformation 〈Σ〉 → U〈Σ〉U †, one can have

〈Σ〉 diagonal, which in turn implies

[〈Σ〉, Ta ∈ Cartan] = 0 (D7)

The adjoint Higgs preserves the rank of the group after the symmetry breaking. This is

specially important in SU(5) since it has the same rank (=4) as the SM gauge group.

All other representations are built out of the fundamental Φ (and/or Φ∗) by symmetrizing

and antisymmetrizing (and subtracting the trace when necessary). For example

ΦiΦj = Φ[i,j]+ Φ{i,j} (D8)

N(N−1)
2

N(N + 1)

2
(D9)
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This means that all the charges get summed up

Q(ΦiΦj) = Q(Φi) +Q(Φj) (D10)

Appendix E: SO(2N) group theory

SO(2N) is the group of real orthogonal transformations, OTO = OOT = 1, with det(O) =

1. It can be generated by N(N − 1)/2 Hermitean antisymmetric matrices

O = e−iθijLij (E1)

with

(Lij)kl = −i(δikδjl − δilδjk) (E2)

so that one has the following commutation relations

[Lij, Lkl] = i(δikLjl − δjlLik) (E3)

The N-dimensional Cartan subalgebra is spanned by

Cartan = {L12, L34, ..., L2N−1,2N} (E4)

whose eigenvalues are ±1. The fundamental (vector) representation transforms as

Φi → OijΦj (E5)

and is generated by Lij in E2. One can construct the general N-index irreducible repre-

sentation by antisymmetrizing or symmetrizing (and subtracting traces) N times the vector

representation. Rather interesting are the [N]- index antisymmetric ones, for one can com-

plexify them by introducing

Φ±[a1..aN ] = Φ[a1..aN ] ±
iN

N !
εa1...aN b1...bNΦb1...bN (E6)

We illustrate this on a simple example below in SO(2) where this amounts to just com-

plexifying a fundamental representation. It turns out that such 5 index antisymmetric 126

dimensional representation of SO(10) plays a profound role in a physics of neutrino mass;

this is discussed in the section VII.
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a. SO(2N): spinors

By analogy with the Dirac algebra in Minkowski space, an Euclidean version is based on

the Clifford algebra of the Γi matrices (i = 1...2N)

{Γi,Γj} = 2δij (E7)

out of which one can construct N(N − 1)/2 generators

Σij =
1

4i
[Γi,Γj] (E8)

which satisfy the usual commutation relations of the SO(2N) generators in E3. It is easy

to see that the Cartan subalgebra consists of N generators

Cartan = {Σ12, ...,Σ2N−1,2N} (E9)

whose eigenvalues are ±1/2.

The appropriate 2N -dimensional complex representation Ψ is called a spinor of SO(2N).

Adding a spinor changes of course a group, just as SO(3) becomes SU(2). One often calls

SO(2N) with spinors: Spin(2N). The spinors transforms in the following manner

Ψ→ e−iθijΣijΨ (E10)

Again, by analogy with Dirac γ5 matrix one can introduce

ΓFIVE = (−1)NΓ1...Γ2N (E11)

with the properties

Γ2
FIVE = 1, [ΓFIVE,Σij] = 0, {ΓFIVE,Γi} = 0 (E12)

By using the projectors

Γ+(−) ≡
1± ΓFIVE

2
(E13)

one can construct the irreducible 2N−1 dimensional spinors

Ψ± ≡ Γ+(−)Ψ (E14)

by analogy with Weyl spinors of the Lorentz group.

One can also introduce the analogue of the usual charge conjugation by demanding that
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ΨTBΨ = invariant⇔ Ψc ≡ BΨ∗ (E15)

which amounts to

ΣTB +BΣ = 0 (E16)

There are two possible solutions for B

B(1) = Γ1...Γ2N−1 , ;B(2) = Γ2...Γ2N (E17)

The ket notation for spinors. From

ΓFIVE = 2Σ12..2Σ2N−1,2N (E18)

one can write

ΓFIVE = ε1ε2...εN (E19)

where εi are ±1, the eigenvalues of 2Σ2i−1,2i. Then one can denote the Ψ+ spinors as a ket

Ψ+ ≡ |ε1...εN〉; ε1..εN = +1 (E20)

For example, take the spinors Ψ+ of SO(10)

Ψ+ ≡ |ε1...ε5〉; ε1..ε5 = +1 (E21)

The 16-component Ψ+ can be decomposed as

Ψ+ =



1 field |+ + + ++〉

10 fields

|+ + +−−〉, |+ +−+−〉, |+ +−−+〉
|+−+ +−〉, |+−+−+〉, |+−−++〉
| −+ + +−〉, | −+ +−+〉, | −+−++〉, | − −+ ++〉

5 fields
|+−−−−〉, | −+−−−〉
| − −+−〉, | − − −+−〉, | − − −−+〉

(E22)

We will see that this can be interpreted as a decomposition under SU(5)

16 = 10 + 5 + 1 (E23)
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In other words, a family of fermions augmented by a right-handed neutrino makes and

irreducible spinorial representation of SO(10). The unification of matter, on top of gauge

interactions, points strongly towards SO(10). However, in order to appreciate this fact and

have fun with SO(10), we first go through some pedagogical exposition of smaller groups.

b. SO(2): a prototype for SO(4n+ 2)

We choose

Γ1 = σ1, Γ2 = σ2 (E24)

so that

ΓFIVE = σ3 Σ12 =
σ3

2
(E25)

which illustrates clearly [ΓFIVE,Σi,j] = 0. The irreducible 1-component spinors transform as

Ψ+ → e−iθ/2Ψ+ , Ψ− → e+iθ/2Ψ− (E26)

since

Ψ ≡

 Ψ+

Ψ−

→ e−iθσ3/2

 Ψ+

Ψ−

 (E27)

On the other hand, the two-component vectors transform as φ1

φ2

→
 cos θ sin θ

− sin θ cos θ

  φ1

φ2

 (E28)

or

φ1 ± iφ2 → e±iθ(φ1 ± iφ2) (E29)

Eqs. E26 and E29 simply account for the fact SO(2) ' U(1).

The internal “charge” conjugation B can be chosen as B1 = σ1, so that

ΨTBΨ = Ψ+Ψ− (E30)

However, only Ψ+ (or Ψ−) is an irreducible spinor, therefore there is no mass term for an

irreducible spinor of SO(2). In other words, the spinors Ψ+ (Ψ−) are chiral and can represent

physical particles such as the fermions of the SM. This is true in any SO(4n+ 2) theory. In

particular, in SO(10), which means that it offers hope of being realistic.

Dual representation. From
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εijdetO = OikOjlεkl (E31)

it is easy to see that φi and εijφi transform in the same way. We can introduce the self

(anti-self) dual representation

Φi(±) =
1√
2

(φi ± iεijφj) (E32)

which is nothing else but the complex representation of U(1) E29. This should make clear

the generic concept of self dual representations in SO(2N) discussed before.

Yukawa couplings. We have seen that there is no direct mass term. There are Yukawa

couplings, though, of the type

LY = ΨTBσiΨφi

= Ψ+Ψ+(φ1 − iφ2) + Ψ−Ψ−(φ1 + iφ2) (E33)

as dictated by U(1) charges.

c. SO(4)

One knows that SO(4) is isomorphic to SU(2) × SU(2), and it plays an important role

in providing a left-right symmetric subgroup of SO(10). It is an Euclidean analog of the

Lorentz group and the Clifford algebra can be generated by

Γ1 =

 0 σ1

σ1 0

 Γ2 =

 0 σ2

σ2 0


Γ3 =

 0 σ3

σ3 0

 Γ4 =

 0 −i
i 0

 (E34)

so that

ΓFIVE =

 1 0

0 −1

 (E35)

and “charge” conjugation can be taken as

B(1) = Γ1Γ3 =

 −iσ2 0

0 −iσ2

 (E36)
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or

B(2) = Γ2Γ4 =

 iσ2 0

0 −iσ2

 (E37)

The mass term

ΨTBΨ ∝ ΨT
+iσ2Ψ+ + ... (E38)

where

Ψ± =
1± Γ5

2
Ψ± (E39)

In other words, the mass term for Ψ+ (or Ψ−) is invariant, which means that we can have

no chiral fermions in SO(4). This is true for all SO(4n) groups.

In the ket notation

Ψ+ = |ε1ε2〉; ε1ε2 = 1; ε1,2 = ±1 (E40)

or

Ψ+ =

 |+ +〉
| − −〉

 (E41)

Introduce the neutral generator of SU(2)L and SU(2)R

T3L ≡
1

2
(Σ12 + Σ34) , T3R ≡

1

2
(Σ12 − Σ34) (E42)

and you see that Ψ+ is an SU(2)L doublet, SU(2)R singlet field, an analog of left-handed

Weyl spinors of the Lorentz group. Similarly, Ψ− is an SU(2)L singlet, SU(2)R doublet field.

d. SO(6)

SO(6) ∼ SU(4)C is the Pati-Salam group of quark-lepton symmetry, with leptons as the

fourth color. It deserves a brief description.

Start with a six-dimensional vector Φi (i=1..6). It is easy to see that the components

(φ1±φ2), (φ3±φ4), (φ5±φ6) transform as 3 and 3∗ of its subgroup SU(3) which we identify

with the color.

The neutral generators are identified as

T3C =
1

2
(Σ12 − Σ34)

T8C =
1

2
(Σ12 + Σ34 − 2Σ56) (E43)
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The additional neutral generator of SU(4), identifiable as B − L, can be written as

B − L = −2

3
(Σ12 + Σ34 + Σ56) (E44)

Regarding spinors, the positive chirality can be written as

Ψ+ =


color singlet |+ ++〉

color triplet (B− L) = 1/3 |+−−〉, | −+−〉, | − −+〉

(E45)

It says simply that the irreducible 4-component spinor of SO(6) is a fundamental of SU(4)

with the decomposition under SU(3)c (with B − L)

Ψ+ = 4 = 1−1 + 31/3 (E46)

which is precisely a combination of a lepton and a colored quark. Similarly, Ψi = 4∗ =

1+1 + 3−1/3 stands for an antilepton and antiquark.

Exercise:

As a check, show that 4× 4 = 6 + 10. Show that 6 of SO(6) has the quantum number of

the 6 (antisymmetric) of SU(4).

Yukawa couplings in SO(6). We know that the irreducible spinors of SO(6) are

fundamental representations of SU(4) and 4 × 4 = 6 + 10. There are then two types of

Yukawa couplings

LY = y6ΨTBΓiΨΦi + y10ΨTBΓiΓjΓkΨΦ−[ijk] (E47)

where it is a simple exercise to show that Φ−[ijk]is an anti-self-dual representation

Φ−ijk = Φ−[ijk] =
i

3!
εijklmnΦ[lmn] (E48)

and where Φ−[ijk] is the 3-index antisymmetric tensor of SO(6).

Exercise: Construct the self-dual and anti-self-dual representation of SO(6) out of the

3-index antisymmetric representation Φ[ijk]. Show that 20 = 10 + 10. Then prove equation

E47 and show that there are no other couplings
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Exercise: Take the Pati-Salam group SO(4)×SO(6) ' SU(2)L×SU(2)R×SU(4)c. Show

that the representations (2, 1, 4) and (1, 2, 4) give a family of quarks and leptons augmented

by a right-handed neutrino

Exercise: The chiral anomalies are proportional to Λijk = Tr({Ti, Tj}Tk). Show that

the SO(2N) groups are anomaly free, except for the SO(6). Comment on why SO(6) must

have an anomaly
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R. N. Mohapatra, G. Senjanović, Phys. Rev. Lett. 42 (1979) 1651.
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[35] R. Foot, H. Lew, X. G. He and G. C. Joshi, Z. Phys. C 44 (1989) 441;

[36] E. Ma, Phys. Rev. Lett. 81 (1998) 1171 [arXiv:hep-ph/9805219].

[37] W. Y. Keung and G. Senjanović, Phys. Rev. Lett. 50 (1983) 1427.
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[63] J. R. Ellis and M. K. Gaillard, Phys. Lett. B 88, 315 (1979).

A. J. Buras, J. R. Ellis, M. K. Gaillard and D. V. Nanopoulos, Nucl. Phys. B 135 (1978) 66.

[64] C. Bachas, C. Fabre and T. Yanagida, Phys. Lett. B 370, 49 (1996) [arXiv:hep-th/9510094].

[65] B. Bajc and G. Senjanović, arXiv:hep-ph/0612029.
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[67] A. Arhrib, B. Bajc, D. K. Ghosh, T. Han, G. Y. Huang, I. Puljak and G. Senjanović,
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