Balkan School 2011
 Problems 1

Prepared by Goran and Miha
August 23, 2011

1. Dirac spinor transformations. A four-component Dirac spinor transforms under the Lorentz group as

$$
\begin{equation*}
\psi \rightarrow S \psi, S=e^{\frac{i}{2} \theta_{\mu \nu} \Sigma^{\mu \nu}}, \Sigma^{\mu \nu} \equiv \frac{1}{4 i}\left[\gamma^{\mu}, \gamma^{\nu}\right] \tag{1}
\end{equation*}
$$

where γ^{μ} obey

$$
\begin{gather*}
\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu} \tag{2}\\
\gamma^{0}=\left(\begin{array}{ll}
0 & \mathbb{I} \\
\mathbb{I} & 0
\end{array}\right), \gamma^{i}=\left(\begin{array}{cc}
0 & \sigma^{i} \\
-\sigma^{i} & 0
\end{array}\right) . \tag{3}
\end{gather*}
$$

(a) Introduce left and right-handed chiral spinors

$$
\begin{equation*}
\psi_{L, R} \equiv \frac{1 \pm \gamma_{5}}{2} \psi, \gamma_{5}=-i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3} \tag{4}
\end{equation*}
$$

Show that

$$
\begin{equation*}
u_{L(R)} \rightarrow e^{-i \sigma / 2(\theta \mp i \phi)} u_{L(R)} \tag{5}
\end{equation*}
$$

with

$$
\begin{equation*}
\psi_{L}=\binom{u_{L}}{0}, \quad \psi_{R}=\binom{0}{u_{R}} \tag{6}
\end{equation*}
$$

What are θ and ϕ ?
(b) Take a boost in the z direction and find an expression for ϕ.
2. Parity and charge conjugation. Define a charge conjugate spinor

$$
\begin{equation*}
\psi^{c} \equiv C \bar{\psi}^{T} \tag{7}
\end{equation*}
$$

with

$$
\begin{equation*}
C^{T} \gamma^{\mu} C=-\gamma_{\mu}^{T}, C^{T}=-C, C^{\dagger}=-C \tag{8}
\end{equation*}
$$

(we chose explicitly $C=i \gamma_{2} \gamma_{0}$).
(a) Show that

$$
\begin{equation*}
\psi^{c} \rightarrow S \psi^{c} \tag{9}
\end{equation*}
$$

under the Lorentz group, which shows that ψ^{c} transforms the same way as ψ, i.e. it is also a proper spinor.
(b) Take ψ_{L} and compute its charge conjugate. What is its chirality?
(c) What happens to u_{L} and u_{R} under a parity transformation? Recall that

$$
\begin{equation*}
\mathcal{P}: \psi \rightarrow \gamma_{0} \psi \tag{10}
\end{equation*}
$$

3. Majorana fermions: Take a left-handed Weyl field

$$
\begin{equation*}
\psi_{L}=\binom{u_{L}}{0} \tag{11}
\end{equation*}
$$

and construct the following Majorana field

$$
\begin{equation*}
\psi_{M}=\psi_{L}+C \bar{\psi}_{L}^{T} \tag{12}
\end{equation*}
$$

(a) Show that

$$
\begin{equation*}
\psi_{L}^{T} C \psi_{L} \tag{13}
\end{equation*}
$$

is Lorentz invariant.
(b) See that

$$
\begin{equation*}
\bar{\psi}_{M} \gamma^{\mu} \partial_{\mu} \psi_{M}=2 \bar{\psi}_{L} \gamma^{\mu} \partial_{\mu} \psi_{L} \tag{14}
\end{equation*}
$$

and that the Majorana mass terms can be rewritten as

$$
\begin{equation*}
\bar{\psi}_{M} \psi_{M}=\psi_{L}^{T} C \psi_{L}+\text { h.c.. } \tag{15}
\end{equation*}
$$

