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1 Introduction

Particle Physics is the study of matter at the smallest scales that can be accessed
by experiment. Currently energy scales are as high as 100GeV which corresponds to
distances of 10−16cm (recall that the atomic scale is about 10−9cm and the nucleus is
about 10−13cm). Our understanding of Nature up to this scale is excellent1. Indeed
it must be one of the most successful and accurate scientific theories and goes by the
least impressive name “The Standard Model of Elementary Particle Physics”. The
mathematical framework for such a theory is a relativistic quantum field theory and in
particular a quantum gauge theory.

There are two essential ingredients into relativistic quantum field theories: Special
relativity and quantum mechanics. The success of special relativity and quantum me-
chanics are particularly astounding. In some sense what our understanding of particle
physics has taught us is that reality is ultimately ruled by quantum mechanics and the
Lorentz group is the most fundamental structure we know about spacetime.

Quantum mechanics remains largely untouched in modern theoretical physics. How-
ever mathematically there is something deeper than the Lorentz Lie-algebra. This is the
super-Lorentz algebra or simply supersymmetry. It is possible to construct interacting
relativistic quantum field theories whose spacetime symmetry group is larger than the
Lorentz group. These theories are called supersymmetric and exhibit a novel kind of
symmetry where Fermions and Bosons are related to each other.

Supersymmetric theories turn out to be very interesting. Since they have more and
deeper symmetries they are generally more tractable to solve quantum mechanically.
Indeed almost all theoretical progress in understanding gauge theories such as those that
arise in the Standard Model have come through studying their supersymmetric cousins.
Supersymmetry has also grown-up hand in hand with String Theory but it is logically
independent. However the successes of String Theory have also been brought using
supersymmetry and hence supersymmetry has, like String Theory, become a central
theme in modern theoretical particle physics.

Beyond the abstract mathematical and theoretical beauty of supersymmetry there
are phenomenological reasons studying supersymmetric extensions of the Standard Model.
There is currently a great deal of interest focused on the LHC (Large Hadron Collider)
in CERN. The great hope is that new physics, beyond that predicted by the Standard
Model, will be observed. One of the main ideas, in fact probably the most popular, is
that supersymmetry will be observed. There are at least three main reasons for this:

• The Hierarchy problem: The natural scale of the Standard Model is the electro-
weak scale which is at about 1TeV (hence the excitement about the LHC). In a
quantum field theory physical parameters, such as the mass of the Higg’s Boson,
get renormalized by quantum effects. Why then is the Higg’s mass not renormal-
ized up to the Planck scale? To prevent this requires and enormous amount of

1This ignores important issues that arise in large and complex systems such as those that are studied
in condensed matter physics.
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fine-tuning. However in a supersymmetric model these renormalizations are less
severe and fine-tuning is not required (or at least is not as bad).

• Unification: Another key idea about beyond the Standard Model is that all the
gauge fields are unified into a single, simple gauge group at some high scale, roughly
1015GeV . Mathematically this is possible with an SU(5) or SO(10) gauge group.
Although the electromagnetic, strong and weak coupling constants differ at low
energy, they ‘run’ with energy and meet at about 1015GeV . That any two of them
should meet is trivial but that all three meet at the same scale is striking and
gives further physical evidence for unification. Well in fact they don’t quite meet
in the Standard Model but they do in a supersymmetric version.

• Dark Matter: It would appear that most, roughly 70%, of the matter floating
around in the universe is not the stuff that makes up the Standard Model. Super-
symmetry predicts many other particles other than those observed in the Standard
Model, the so so-called superpartners, and the lightest superpartner (LSP) is con-
sidered a serious candidate for dark matter.

If supersymmetry is observed in Nature it will be a great triumph of theoretical
physics. Indeed the origin of supersymmetry is in string theory and the two fields have
been closely linked since their inception. If not one can always claim that supersym-
metry is broken at a higher energy (although in so doing the arguments in favour of
supersymmetry listed above will cease to be valid). Nevertheless supersymmetry has
been a very fruitful subject of research and has taught us a great deal about mathe-
matics and quantum field theory. For example supersymmetric quantum field theories,
especially those with extended supersymmetry, can be exactly solved (in some sense)
at the perturbative and non-perturbative levels. Hopefully this course will convince the
student that supersymmetry is a beautiful and interesting subject.

2 The Lorentz Algebra, Clifford Algebras and Spinors

Matter is made of Fermions. Since the details are crucial before proceeding it is necessary
to review in detail the formalism that is needed to describe spinors and Fermions. We
shall now do this. It is helpful to generalize to spacetime with D dimensions. The details
of spinors vary slightly from dimension to dimension (although conceptually things are
more or less the same). To help highlight the differences between vectors and spinors it
is useful to consider a general dimension.

Fermions first appeared with Dirac who thought that the equation of motion for
an electron should be first order in derivatives. Hence, for a free electron, where the
equation should be linear, it must take the form

(γµ∂µ −M)ψ = 0 (2.1)
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Acting on the left with (γµ∂µ +M) one finds

(γµγν∂µ∂ν −M2)ψ = 0 (2.2)

This should be equivalent to the Klein Gordon equation (which is simply the mass-shell
condition E2 − p2 −m2 = 0)

(∂2 −m2)ψ = 0 (2.3)

Thus we see that we can take m = M to be the mass and, since ∂µ∂νψ = ∂ν∂µψ, we
also require that

{γµ, γν} = γµγν + γνγµ = 2ηµν (2.4)

This seemingly innocent condition is in fact quite deep. It first appeared in Mathematics
in the geometrical work of Clifford (who was a student at King’s). The next step is to find
representations of this relation which reveals an ‘internal’ spin structure to Fermions.

2.1 Clifford Algebras

Introducing Fermions requires that we introduce a set of γ-matrices. These furnish a
representation of the Clifford algebra, which is generically taken to be over the complex
numbers, whose generators satisfy the relation

{γµ, γν} = 2ηµν (2.5)

Note that we have suppressed the spinor indices α, β. In particular the right hand
side is proportional to the identity matrix in spinor space. We denote spinor indices
by α, β.... Although we will only be interested in the four-dimensional Clifford algebra
in this course it is instructive to consider Clifford algebras in a variety of dimensions.
Each dimension has its own features and these often play an important role in the
supersymmetric theories that can arise.

One consequence of this relation is that the γ-matrices are traceless (at least for
D > 1). To see this we evaluate

2ηµνTr(γλ) = Tr({γµ, γν}γλ)
= Tr(γµγνγλ + γνγµγλ)

= Tr(γµγνγλ + γµγλγν)

= Tr(γµ{γν , γλ})
= 2ηνλTr(γµ) (2.6)

Choosing µ = ν 6= λ immediately implies that Tr(γλ) = 0

Theorem: In even dimensions there is only one non-trivial irreducible representation
of the Clifford algebra, up to conjugacy, i.e. up to a transformation of the form γµ →
UγµU

−1. In particular the (complex) dimension of this representation is 2D/2, i.e. the
γ-matrices will be 2D/2 × 2D/2 complex valued matrices.
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Without loss of generality one can choose a representation such that

γ†0 = −γ0 , γ†i = γi (2.7)

which can be written as
γ†µ = γ0γµγ0 (2.8)

An even-dimensional Clifford algebra naturally lifts to a Clifford algebra in one
dimension higher. In particular one can show that

γD+1 = cγ0γ1...γD−1 (2.9)

anti-commutes with all the γµ’s. Here c is a constant which we can fix, up to sign, by
taking γ2

D+1 = 1. In particular a little calculation shows that

γ2
D+1 = −(−1)D(D−1)/2c2 (2.10)

Here the first minus sign comes from γ2
0 whereas the others come from anti-commuting

the different γµ’s through each other. In this way we find that

c = ±i(−1)D(D−1)/4 (2.11)

Thus we construct a Clifford Algebra in (D + 1)-dimensions. It follows that the
dimension (meaning the range of the spinor indices α, β...) of a Clifford algebra in
(D + 1)-dimensions is the same as the dimension of a Clifford algebra in D-dimensions
when D is even.

In odd dimensions there are two inequivalent representations. To see this one first
truncates down one dimension. This leads to a Clifford algebra in a even dimension
which is therefore unique. We can then construct the final γ-matrix using the above
procedure. This leads to two choices depending on the choice of sign above. Next
we observe that in odd-dimensions γD+1, defined as the product of all the γ-matrices,
commutes with all the γµ’s. Hence by Shur’s lemma it must be proportional to the
identity. Under conjugacy one therefore has γD+1 → UγD+1U

−1 = γD+1. The constant
of proportionality is determined by the choice of sign we made to construct the final γ-
matrix. Since this is unaffected by conjugation we find two representation we constructed
are inequivalent.

We can also construct a Clifford algebra in D + 2 dimensions using the Clifford
algebra in D dimensions. Let

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(2.12)

be the ubiquitous Pauli matrices. If we have the Clifford algebra in D-dimensions given
by γµ, µ = 0, 1, 2, ..., D − 1 then let

Γµ = 1⊗ γµ
ΓD = σ1 ⊗ γD+1

ΓD+1 = σ3 ⊗ γD+1

(2.13)
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where we have used Γµ for (D + 2)-dimensional γ-matrices. One readily sees that
this gives a Clifford algebra in (D + 2)-dimensions. Note that this gives two algebras
corresponding to the two choices of sign for γD+1. However these two algebras are
equivalent under conjugation by U = σ2⊗1. This is to be expected from the uniqueness
of an even-dimensional Clifford algebra representation.

Having constructed essentially unique γ-matrices for a given dimension there are
two special things that can happen. We have already seen that in even dimensions one
finds an “extra” Hermitian γ-matrix, γD+1 (so in four dimensions this is the familiar
γ5). Since this is Hermitian it has a basis of eigenvectors with eigenvalues ±1 which are
called the chirality. Indeed since the γ-matrices are traceless half of the eigenvalues are
+1 and the other half −1. We can therefore write any spinor ψ uniquely as

ψ = ψ+ + ψ− (2.14)

where ψ± has γD+1 eigenvalue ±1. A spinor with a definite γD+1 eigenvalue is called a
Weyl spinor.

The second special case occurs when the γ-matrices can be chosen to be purely real.
In which case it is possible to chose the spinors to also be real. A real spinor is called a
Majorana spinor.

Either of these two restrictions will cut the number of independent spinor components
in half. In some dimensions it is possible to have both Weyl and Majorana spinors
simultaneously. These are called Majorana-Weyl spinors. This reduces the number
of independent spinor components to a quarter of the original size. Spinors without
any such restrictions are called Dirac spinors. Which restrictions are possible in which
dimensions comes in a pattern which repeats itself for dimensions D modulo 8.

Let us illustrate this by starting in low dimensions and work our way up. We will
give concrete example of γ-matrices but it is important to bare in mind that these are
just choices - there are other choices.

2.1.1 D=1

If there is only one dimension, time, then the Clifford algebra is the simple relation
(γ0)2 = −1. In other words γ0 = i or one could also have γ0 = −i. It is clear that there
is no Majorana representation.

2.1.2 D=2

Here the γ-matrices can be taken to be

γ0 =
(

0 1
−1 0

)
γ1 =

(
0 1
1 0

)
(2.15)
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One can easily check that γ2
0 = −γ2

1 = −1 and γ0γ1 = −γ1γ0.
Here we have a real representation so that we can choose the spinors to also be real.

We can also construct γ3 = cγ0γ1 and it is also real:

γ3 = −γ0γ1 =
(

1 0
0 −1

)
(2.16)

Thus we can have Weyl spinors, Majorana spinors and Majorana-Weyl spinors. These
will have 2, 2 and 1 real independent components respectively whereas a Dirac spinor
will have 2 complex, i.e. 4 real, components.

2.1.3 D=3

Here the γ-matrices can be constructed from D = 2 and hence a natural choice is

γ0 =
(

0 1
−1 0

)
γ1 =

(
0 1
1 0

)
γ2 =

(
1 0
0 −1

)
(2.17)

(we could also have taken the opposite sign for γ2). These are just the Pauli matrices
(up to a factor of i for γ0). Since we are in an odd dimension there are no Weyl spinors
but we can choose the spinors to be Majorana with only 2 real independent components.

2.1.4 D=4

Following our discussion above a natural choice is

γ0 = 1⊗ iσ2 =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0



γ1 = 1⊗ σ1 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0



γ2 = σ1 ⊗ σ3 =


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0



γ3 = σ3 ⊗ σ3 =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 (2.18)
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By construction this is a real basis of γ-matrices. Therefore we can chose to have
Majorana, i.e. real, spinors.

Since we are in an even dimension we can construct the chirality operator γ5 =
iγ0γ1γ2γ3. Note the factor of i which is required to ensure that γ2

5 = 1. Thus in our
basis γ5 is purely imaginary and, since it is Hermitian, it must be anti-symmetric. This
means that it cannot be diagonalized over the reals. Of course since it is Hermitian it
can be diagonalized over the complex numbers, i.e. there is another choice of γ-matrices
for which γ5 is real and diagonal but in this basis the γµ cannot all be real.

Thus in four dimensions we can have Majorana spinors or Weyl spinors but not both
simultaneously. In many books, especially those that focus on four-dimensions, a Weyl
basis of spinors is used. Complex conjugation then acts to flip the chirality. However
we prefer to use a Majorana basis whenever possible (in part because it applies to more
dimensions).

2.2 Lorentz and Poincare Algebras

We wish to construct relativistic theories which are covariant with respect to the Lorentz
and Poincare symmetries. These consists of translations along with the Lorentz trans-
formations (which in turn contain rotations and boosts). In particular the theory is
invariant under the infinitesimal transformations

xµ → xµ + aµ + ωµνx
ν i .e. δxµ = aµ + ωµνx

ν (2.19)

Here aµ generates translations and ωµν generates Lorentz transformations. The principle
of Special relativity requires that the spacetime proper distance ∆s2 = ηµν∆x

µ∆xν

between two points is invariant under these transformations. Expanding to first order
in ωµν tells us that

∆s2 → ηµν(∆x
µ + ωµλ∆x

λ)(∆xν + ωνρ∆x
ρ)

= ηµν∆x
µ∆xν + ηµνω

µ
λ∆x

λ∆xν + ηµνω
ν
ρ∆x

µ∆xρ

= ∆s2 + (ωµν + ωνµ)∆xµ∆xν (2.20)

where we have lowered the index on ωµν . Thus we see that the Lorentz symmetry
requires ωµν = −ωνµ.

Next we consider the algebra associated to such generators. To this end we want to
know what happens if we make two Poincare transformations and compare the difference,
i.e. we consider δ1δ2x

µ − δ2δ1x
µ. First we calculate

δ1δ2x
µ = ωµ1 νa

ν
2 + ωµ1 λω

λ
2 νx

ν (2.21)

from which we see that

(δ1δ2 − δ2δ1)xµ = (ωµ1 λa
λ
2 − ω

µ
2 λa

λ
1) + (ωµ1 λω

λ
2 ν − ω

µ
2 λω

λ
1 ν)x

ν (2.22)

9



This corresponds to a new Poincare transformation with

aµ = ωµ1 λa
λ
2 − ω

µ
2 λa

λ
1 ωµν = ωµ1 λω

λ
2 ν − ω

µ
2 λω

λ
1 ν (2.23)

note that ω(µν) = 1
2
(ωµν + ωνµ) = 0 so this is indeed a Poincare transformation.

More abstractly we think of these transformations as being generated by linear op-
erators Pµ and Mµν so that

δxµ = iaνPν(x
µ) +

i

2
ωνλMνλ(x

µ) (2.24)

The factor of 1
2

arises because of the anti-symmetry (one doesn’t want to count the same
generator twice). The factors of i are chosen for later convenience to ensure that the
generators are Hermitian. These generators can then also be though of as applying on
different objects, e.g. spacetime fields rather than spacetime points. In other words we
have an abstract algebra and its action on xµ is merely one representation.

This abstract object is the Poincare algebra and it defined by the commutators

[Pµ, Pν ] = 0

[Pµ,Mνλ] = −iηµνPλ + iηµλPν

[Mµν ,Mλρ] = −iηνλMµρ + iηµλMνρ − iηµρMνλ + iηνρMµλ

(2.25)

which generalizes (2.22).

Problem: Using (2.24) and(2.25) show that (2.22) is indeed reproduced.

The Poincare group has two clear pieces: translations and Lorentz transformations.
It is not quite a direct product because of the non-trivial commutator [Pµ,Mνλ]. It
is a so-called a semi-direct product. Translations by themselves form an Abelian and
non-compact subgroup. On physical grounds one always takes Pµ = −i∂µ. This seems
obvious from the physical interpretation of spacetime. Mathematically the reason for
this is simply Taylor’s theorem for a function f(xµ):

f(x+ a) = f(x) + ∂µf(x)aµ + . . .

= f(x) + iaµPµf(x) + . . . (2.26)

Thus acting by Pµ will generate a infinitessimal translation. Furthermore Taylor’s the-
orem is the statement that finite translations are obtained from exponentiating Pµ:

f(x+ a) = eia
µPµf(x)

= f(x) + aµ∂µf(x) +
1

2!
aµaν∂µ∂νf(x) + . . . (2.27)

However the other part, the Lorentz group, is non-Abelian and admits interesting
finite-dimensional representations. For example the Standard Model contains a scalar
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field H(x) (the Higg’s Boson) which carries a trivial representation and also vector fields
Aµ(x) (e.g. photons) and spinor fields ψα(x) (e.g. electrons). A non-trivial representation
of the Lorentz group implies that the field carries some kind of index. In the two cases
above these are µ and α respectively. The Lorentz generators then act as matrices with
two such indices (one lowered and one raised). Different representations mean that there
are different choices for these matrices which still satisfies (2.25). For example in the
vector representation one can take

(Mµν)
λ
ρ = iηµρδ

λ
ν − iδλµηνρ (2.28)

Notice the dual role of µ, ν indices as labeling both the particular Lorentz generator as
well as it’s matrix components. Whereas in the spinor representation we have

(Mµν)
β
α = − i

2
(γµν)

β
α = − i

4
(γµγν − γµγν) β

α (2.29)

Here (γµ) β
α are the Dirac γ-matrices. However in either case it is important to realize

that the defining algebraic relations (2.25) are reproduced.

Problem: Verify that these two representation of Mµν do indeed satisfy the Lorentz
subalgebra of (2.25).

2.3 Spinors

Having defined Clifford algebras we next need to discuss the properties of spinors in
greater detail. We will see later that Mµν = i

2
γµν gives a representation of the Lorentz

algebra, known as the spinor representation. A spinor is simply an object that transforms
in the spinor representation of the Lorentz group (it is a section of the spinor bundle
over spacetime). Hence it carries a spinor index α. From our definitions this means that
under a Lorentz transformation generated by ωµν , a spinor ψα transforms as

δψα =
1

4
ωµν(γµν)

β
α ψβ (2.30)

Note that we gives spinors a lower spinor index. As such the γ-matrices naturally come
with one upper and one lower index, so that matrix multiplication requires contraction
on one upper and one lower index.

Let us pause for a moment to consider a finite Lorentz transformation. To begin
with consider an infinitesimal rotation by an angle θ in the (x1, x2)-plane,

δ


x0

x1

x2

x3

 = θ


x0

−x2

x1

x3

 (2.31)
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i.e.

ω12 = −ω21 = θ M12 =


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

 (2.32)

A finite rotation is obtained by exponentiating M12:

xµ → (eω
λρMλρ)µνx

ν (2.33)

Since M2
12 = −1 one finds that, using the same proof as the famous relation eiθ =

cos θ + i sin θ,
eθM12 = cos θ +M12 sin θ (2.34)

In particular we see that if θ = 2π then e2πM12 = 1 as expected.
How does a spinor transform under such a rotation? The infinitesimal transformation

generated by ω12 is, by definition,

δψ =
1

4
ωµνγµνψ =

1

2
θγ12ψ (2.35)

If we exponentiate this we find

ψ → e
1
2
θγ12ψ = cos(θ/2) + γ12 sin(θ/2) (2.36)

We see that now, if θ = 2π, then ψ → −ψ. Thus we recover the well known result that
under a rotation by 2π a spinor (such as an electron) picks up a minus sign.

Let us now try to contract spinor indices to obtain Lorentz scalars. It follows that
the Hermitian conjugate transforms as

δψ† =
1

4
ψ†ωµνγ†νγ

†
µ =

1

4
ψ†ωµνγ0γνµγ0 =

1

4
ψ†ωµνγ0γµνγ0 (2.37)

Here we have ignored the spinor index. Note that the index structure is (γ0γµνγ0) β
α and

therefore it is most natural to write (ψ†)α = ψ∗α with an upstairs index.
However we would like to contract two spinors to obtain a scalar. One can see that

the naive choice
λ†ψ = λ∗αψα (2.38)

will not be a Lorentz scalar due to the extra factors of γ0 that appear in δλ† as compared
to δψ. To remedy this one defines the Dirac conjugate

λ̄ = λ†γ0 (2.39)

In which case on finds that, under a Lorentz transformation,

δλ̄ = −1

4
λ̄ωµνγµν (2.40)
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and hence

δ(λ̄ψ) = δλ̄ψ + λ̄δψ

= −1

4
λ̄ωµνγµνψ +

1

4
λ̄ωµνγµνψ

= 0 (2.41)

Thus we have found a Lorentz invariant way to contract spinor indices.
Note that from two spinors we can construct other Lorentz covariant objects such

as vectors and anti-symmetric tensors:

λ̄γµψ , λ̄γµνψ , . . . (2.42)

Problem: Show that Vµ = λ̄γµψ is a Lorentz vector, i.e. show that δVµ = ω ν
µ Vν under

the transformation (2.30).

So far our discussion applied to general Dirac spinors. In much of this course we
will be interested in Majorana spinors where the γµ are real. The above discussion
is then valid if we replace the Hermitian conjugate † with the transpose T so that
γTµ = −γ0γµγ

−1
0 . More generally such a relationship always exists because if {γµ} is a

representation of the Clifford algebra then so is {−γTµ }. Therefore, since there is a unique
representation up to conjugacy, there must exist a matrix C such that −γTµ = CγµC

−1.
C is called the charge conjugation matrix. The point here is that in the Majorana case it
is possible to find a representation in which C coincides with Dirac conjugation matrix
γ0.

Problem: Show that, for a general Dirac spinor in any dimension, λTCψ is Lorentz
invariant, where C is the charge conjugation matrix.

One way to think about charge conjugation is to view the matrix Cαβ as a metric
on the spinor indices with inverse C−1

αβ . In which case ψα = ψβC
βα.

Finally we note that spinor quantum fields are Fermions in quantum field theory
(this is the content of the spin-statistics theorem). This means that spinor components
are anti-commuting Grassmann variables

ψαψβ = −ψβψα (2.43)

We also need to define how complex conjugation acts. Since ultimately in the quantum
field theory the fields are elevated to operators we take the following convention for
complex conjugation

(ψαψβ)∗ = ψ∗βψ
∗
α (2.44)

which is analogous to the Hermitian conjugate. This leads to the curious result that,
even for Majorana spinors, one has that

(ψ̄χ)∗ = (ψ∗αC
αβχβ)∗ = χβC

αβψα = −ψαCαβχβ = −ψ̄χ (2.45)

is pure imaginary!
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3 Supersymmetry and its Consequences

3.1 Symmetries, A No-go Theorem and How to Avoid It

Quantum field theories are essentially what you get from the marriage of quantum
mechanics with special relativity (assuming locality). A central concept of these ideas is
the notion of symmetry. And indeed quantum field theories are thought of and classified
according to their symmetries.

The most important symmetry is of course the Poincare group of special relativity
which we have already discussed. To say that the Poincare algebra is fundamental in
particle physics means that everything is assumed fall into some representation of this
algebra. The principle of relativity then asserts that the laws of physics are covariant
with respect to this algebra.

The Standard Model and other quantum field theories also have other important
symmetries. Most notably gauge symmetries that we have discussed above. These
symmetries imply that there is an additional Lie-algebra with a commutation relation
of the form

[Tr, Ts] = if t
rs Tt (3.46)

where the Tr are Hermitian generators and f t
rs are the structure constants. This means

that every field in the Standard model Lagrangian also carries a representation of this
algebra. If this is a non-trivial representation then there is another ‘internal’ index
on the field. For example the quarks are in the fundamental (i.e. three-dimensional)
representation of SU(3) and hence, since they are spacetime spinors, the field carries
the indices ψaα(x).

Finally we recall Noether’s theorem which asserts that for every continuous symmetry
of a Lagrangian one can construct a conserved charge. Suppose that a Lagrangian
L(ΦA, ∂αΦA), where we denoted the fields by ΦA, has a symmetry: L(ΦA) = L(ΦA +
δΦA). This implies that

∂L
∂ΦA

δΦA +
∂L

∂(∂αΦA)
δ∂αΦA = 0 (3.47)

This allows us to construct a current:

Jα =
∂L

∂(∂αΦA)
δΦA (3.48)

which is, by the equations of motion,

∂αJ
α = ∂α

(
∂L

∂(∂αΦA)

)
δΦA +

∂L
∂(∂αΦA)

∂αδΦA

= ∂α

(
∂L

∂(∂αΦA)

)
δΦA −

∂L
∂ΦA

δΦA

= 0

(3.49)
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conserved. This means that the integral over space of J0 is a constant defines a charge

Q =
∫
space

J0 (3.50)

which is conserved

dQ

dt
=

∫
space

∂0J
0

= −
∫
space

∂iJ
i

= 0

Thus one can think of symmetries and conservations laws as being more or less the same
thing.

So the Standard Model of Particle Physics has several symmetries built into it (e.g.
SU(3)× SU(2)× U(1)) and this means that the various fields carry representations of
various algebras. These algebras split up into those associated to spacetime (Poincare)
and those which one might call internal (such as the gauge symmetry algebra). In fact
the split is a direct product in that

[Pµ, Ta] = [Mµν , Ta] = 0 (3.51)

where Ta refers to any internal generator. Physically this means the conserved charges
of these symmetries are Lorentz scalars.

Since the Poincare algebra is so central to our understanding of spacetime it is natural
to ask if this direct product is necessarily the case or if there is, in principle, some deeper
symmetry that has a non-trivial commutation relation with the Poincare algebra. This
question was answered by Coleman and Mandula:

Theorem: In any spacetime dimension greater than two the only interacting quantum
field theories have Lie algebra symmetries which are a direct product of the Poincare
algebra with an internal symmetry.

In other words the Poincare algebra is apparently as deep as it gets. There are no
interacting theories which have conserved charges that are not Lorentz scalars. Intu-
itively the reasons is that tensor-like charge must be conserved in any interaction and
this is simply too restrictive as the charges end up being proportional to (products of)
the momenta. Thus one finds that the individual momenta are conserved, rather than
the total momentum.

But one shouldn’t stop here. A no-go theorem is only as good as its assumptions.
This theorem has several assumptions, for example that there are a finite number of
massive particles and no massless ones. However the key assumption of the Coleman-
Mandula theorem is that the symmetry algebra should be a Lie-algebra. We recall that
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a Lie-algebra can be thought of as the tangent space at the identity of a continuous
group, so that, an infinitessimal group transformation has the form

g = 1 + iεA (3.52)

where A is an element of the Lie-algebra and ε is an infinitessimal parameter. The
Lie-algebra is closed under a bilinear operation, the Lie-bracket,

[A,B] = −[B,A] (3.53)

subject to the Jacobi identity

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0 (3.54)

If we relax this assumption then there is something deeper - Supersymmetry. So how
do we relax it since Lie-algebras are inevitable whenever you have continuous symmetries
and because of Noether’s theorem we need a continuous symmetry to give a conserved
charge?

The way to proceed is to note that quantum field theories such as the Standard
Model contain two types of fields: Fermions and Bosons. These are distinguished by
the representation of the field under the Lorentz group. In particular a fundamental
theorem in quantum field theory - the spin-statistics theorem - asserts that Bosons must
carry representations of the Lorentz group with integer spins and their field operators
must commute outside of the light-cone whereas Fermions carry half-odd-integer spins
and their field operators are anti-commuting. This means that the fields associated
to Fermions are not ordinary (so-called c-number) valued field but rather Grassmann
variables that satisfy

ψ1(x)ψ2(x) = −ψ2(x)ψ1(x) (3.55)

So a way out of this no-go theorem is to find a symmetry that relates Bosons to
Fermions. Such a symmetry will require that the ‘infinitessimal’ generating parameter
is a Grassmann variable and hence will not lead to a Lie-algebra. More precisely the
idea is to consider a Grassmann generator (with also carries a spinor index) and which
requires a Grassmann valued spinorial parameter. One then is lead to something called
a superalgebra, or a Z2-graded Lie-algebra. This means that the generators can be
labeled as either even and odd. The even generators behave just as the generators of a
Lie-algebra and obey commutation relations. An even and an odd generator will also
obey a commutator relation. However two odd generators will obey an anti-commutation
relation. The even-ness or odd-ness of this generalized Lie-bracket is additive modulo
two: the commutator of two even generators is even, the anti-commutator of two odd
generators is also even, whereas the commutator of an even and an odd generator is
odd. Schematically, the structure of a superalgebra takes the form

[even, even] ∼ even

[even, odd] ∼ odd

{odd, odd} ∼ even (3.56)
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In particular one does not consider things that are the sum of an even and an odd
generator (at least physicists don’t but some Mathematicians might), nor does the com-
mutator of two odd generators, or anti-commutator of two even generators, play any
role. Just as in Lie-algebras there is a Jacobi identity. It is a little messy as whether or
not one takes a commutator or anti-commutator depends on the even/odd character of
the generator. It can be written as

(−1)ac[A, [B,C]±]± + (−1)ba[B, [C,A]±]± + (−1)cb[C, [A,B]±]± = 0 (3.57)

where a, b, c ∈ Z2 are the gradings of the generators A,B,C respectively and [ , ]± is a
commutator or anti-commutator according to the rule (3.56).

There is a large mathematical literature on superalgebras as abstract objects. How-
ever we will simply focus on the case most relevant for particle physics. In particular
the even elements will be the Poincare generators Pµ,Mνλ and the odd elements su-
persymmetries Qα. The important point here is that the last line in (3.56) takes the
form

{Q,Q} ∼ P +M (3.58)

(in fact one typically finds only P or M on the right hand side, and in this course just
P ). Thus supersymmetries are the square-root of Poincare transformations. Thus there
is a sensible algebraic structure that is “deeper” that the Poincare group. Surely this is
worth of study.

One final comment is in order. Although we have found a symmetry that underlies
the Poincare algebra one generally still finds that supersymmetries commute with the
other internal symmetries. Thus a refined version of the Coleman-Mandula theorem still
seems to apply and states that the symmetry algebra of a non-trivial theory is at most
the direct product of the superalgebra and an internal Lie-algebra.2

3.2 Elementary Consequences of Supersymmetry

The exact details of the supersymmetry algebra vary from dimension to dimension, de-
pending on the details of Clifford algebras, however the results below for four-dimensions
are qualitatively unchanged. If there are Majorana spinors then the algebra is, in addi-
tion to the Poincare algebra relations (2.25),3

{Qα, Qβ} = −2(γµC−1)αβPµ

[Qα, Pµ] = 0

[Qα,Mµν ] =
i

2
(γµν)

β
α Qβ

(3.59)

2Note that one should be careful here, while this statement is true in spirit it is imprecise and in
some sense counter examples can be found (e.g. in gauged supergavity).

3More precisely this is the minimal N = 1 super-Poincare algebra. One can have N -extended
supersymmetry algebras and centrally extended supersymmetry algebras. There are also superalgebras
based on other Bosonic algebras than the Poincare algebra, e.g., the anti-de-Sitter algebra.
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The primary relation is the first line. The second line simply states that the Qα’s are
invariant under translations and the third line simply states that they are spacetime
spinors.

At first sight one might wonder why there is a C−1 on the right hand side. The
point is that this is used to lower the second spinor index. Furthermore it is clear that
the left hand side is symmetric in α and β and therefore the right hand side must also
be symmetric. To see that this is the case we observe that, since we have assumed a
Majorana basis where C = −CT = γ0,

(γµC
−1)T = (C−1)TγTµ = −(C−1)TCγµC

−1 = γµC
−1 (3.60)

is indeed symmetric.
Let us take the trace of the primary supersymmetry relation∑

α

{Qα, Qα} = 8P0 (3.61)

Here we have used the fact that C−1 = γ0, Tr(γµν) = 0 and Tr(1) = 22. We can identify
P0 = E with the energy and hence we see that

E =
1

4

∑
α

Q2
α (3.62)

SinceQα is Hermitian it follows that the energy is positive definite. Furthermore the only
states with E = 0 must have Qα|0 >= 0, i.e. they must preserve the supersymmetry.

Supersymmetry, like other symmetries in quantum field theory, can be spontaneously
broken. This means that the vacuum state |vacuum >, i.e. the state of lowest energy,
does not satisfy Qα|vacuum >= 0. We see that in a supersymmetric theory this will be
the case if and only if the vacuum energy is positive.

Next let us consider the representations of supersymmetry. First we observe that
since [Pµ, Qα] = 0 we have [P 2, Qα] = 0. Thus P 2 is a Casmir, that is to say irreducible
representations of supersymmetry (i.e. of the Q’s) all carry the same value of P 2 = −m2.
Thus all the particles in a supermultiplet (i.e. in a irreducible representation) have the
same mass.

Let us first consider a massive supermultiplet. We can therefore go to the rest frame
where Pµ = (m, 0, 0, 0). In this case the algebra becomes

{Qα, Qβ} = 2mδαβ (3.63)

We can of course assume that m > 0 and rescale Q̃α = m−1/2Qα which gives

{Q̃α, Q̃β} = 2δαβ (3.64)

This is just a Clifford algebra in 4 Euclidean dimensions! As such we know that it has
24/2 = 4 states. We can construct the analogue of γ5:

(−1)F = Q1Q2Q3...Q4 (3.65)
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Since we are in 4 Euclidean dimensions we have that ((−1)F )2 = 1. Again (−1)F is
traceless and Hermitian. Therefore it has 2 eigenvalues equal to +1 and 2 equal to
−1. What is the significance of these eigenvalues? Well if |± > is a state with (−1)F

eigenvalue ±1 then Qα|± > will satisfy

(−1)FQα|± >= −Qα(−1)F |± >= ∓Qα|± > (3.66)

Thus acting by Qα will change the sign of the eigenvalue. However since Qα is a
Fermionic operator it will map Fermions to Bosons and vise-versa. Thus (−1)F measures
whether or not a state is Fermionic or Bosonic. Since it is traceless we see that a
supermutliplet contains an equal number of Bosonic and Fermionic states. This is only
true on-shell since we have assumed that we are in the rest frame.

Next let us consider massless particles. Here we can go to a frame where Pµ =
(E,E, 0, 0) so that the supersymmetry algebra becomes

{Qα, Qβ} = 2E(δαβ + (γ01)αβ) (3.67)

We observe that γ2
01 = 1 and also that Tr(γ01) = 0. Therefore the matrix 1 − γ01 has

half its eigenvalues equal to 0 and the others equal to 2. It follows the algebra splits
into two pieces:

{Qα′ , Qβ′} = 4Eδα′β′ {Qα′′ , Qβ′′} = 0 (3.68)

where the primed and doubled primed indices only take on 2 values each. Again by
rescaling, this time Q̃α′ = (2E)−1/2Qα′ we recover a Clifford algebra but in 2 dimensions.
Thus there are just 2 states. Again we find that half are Fermions and the other half
Bosons.

Finally we note that the condition [Qα,Mµν ] = i
2
(γµν)

β
α Qβ implies that states in a

supermultiplet will have spins that differ in steps of 1/2. In an irreducible mutliplet
there is a unique state |jmax > with maximal spin (actually helicity). The remaining
states therefore have spins jmax − 1/2, jmax − 1, ....

It should be noted that often these multiplets will not be CPT complete. For example
if they are constructed by acting with lowering operators on a highest helicity state then
the tend to have more positive helicity states than negative ones. Therefore in order to
obtain a CPT invariant theory, as is required by Lorentz invariance, one has to add in a
CPT mirror multiplet (for example based on using raising operators on a lowest helicity
state).

In higher dimensions the number of states in a supermultiplet grows exponentially
quickly. This is essentially because the number of degrees of freedom of a spinor grow
exponentially quickly. However the number of degrees of freedom of Bosonic fields (such
as scalars and vectors) do not grow so quickly, if at all, when the spacetime dimension
is increase. Although one can always keep adding in extra scalar modes to keep the
Bose-Fermi degeneracy this becomes increasingly unnatural. In fact one finds that if
we only wish to consider theories with spins less than two (i.e. do not include gravity)
then the highest spacetime dimension for which there exists supersymmetric theories is
D = 10. If we do allow for gravity then this pushes the limit up to D = 11.
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3.3 Weyl Notation

In these notes we have used a Majorana representation, since it applies in more dimen-
sions. However often in four-dimensions a so-called Weyl basis is used. Here the spinors
are expanded as eigenstates of γ5 and hence are complex. Given a Majorana spinor λM
we can construct a Weyl spinor by taking

λW =
1

2
(1 + γ5)λM ,

which is complex. Clearly this satisfies γ5λW = λW . Furthermore, since γ5 is purely
imaginary in four dimensions we have

γ5λ
∗
W = −λ∗W

Thus complex conjugation flips the chirality of a Weyl spinor.

Problem: Show that in four-dimensions, where Qα is a Majorna spinor, the first line
of the supersymmetry algebra (3.59) can be written as

{QWα, QWβ} = 0

{Q∗Wα, Q
∗
Wβ} = 0

{QWα, Q
∗
Wβ} = −((1 + γ5)γµC

−1)αβPµ

{Q∗Wα, QWβ} = −((1− γ5)γµC
−1)αβPµ

(3.69)

where QWα is a Weyl spinor and Q∗Wα is its complex conjugate.

In Weyl notation one chooses a different basis for the four-dimensional Clifford Al-
gebra. In particular one writes, in terms of block 2× 2 matrices,

γ5 =
(

1 0
0 −1

)
, γ0 =

(
0 1
−1 0

)
, γi =

(
0 σi
σi 0

)
(3.70)

where σi are the Pauli matrices. Note that the charge conjugation matrix, defined by
γTµ = −CγµC−1, is no longer C = γ0. Rather we find

C = γ0γ2γ5 .

Since Weyl spinors only have two independent components one usually introduces a new
notation: a, ȧ = 1, 2 so that a general 4-component Dirac spinor is decomposed in terms
of two complex Weyl spinors as

ψD =
(
λa
χȧ

)
(3.71)

i.e. the first two indices are denoted by a and the second two by ȧ.
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Let us define σµ
aḃ

= 1
2
((1 − γ5)γµC−1)aḃ, σ̄

µ
ȧb = 1

2
((1 + γ5)γµC−1)ȧb. In this case the

algebra is

{Qa, Qb} = 0

{Q∗ȧ, Q∗ḃ} = 0

{Qa, Q
∗
ḃ
} = −2σµ

aḃ
Pµ

{Q∗ȧ, Qb} = −2σ̄µȧbPµ

(3.72)

Here we have dropped the subscript W since the use of a and ȧ indices implies that we
are talking about Weyl spinors. This form for the algebra appears in many text books
and is also known as the two-component formalism.

Problem: Show that

(σµ)aḃ =
(
δaḃ, σ

i
aḃ

)
(σ̄µ)aḃ =

(
δaḃ,−σ

i
aḃ

)
(3.73)

And therefore

γµ =
(

0 σ̄µ
−σ̄µ 0

)
. (3.74)

Recall that we defined two Lorentz invariant contractions of spinors; Dirac: ψ†γ0ψ
and Majorana: ψTCψ? In the Majorana notation with real spinors these are manifestly
the same (but not if ψ isn’t real). In two component notation these are

ψ†γ0ψ = λ†χ− χ†λ
ψTCψ = λTσ2χ+ χTσ2λ .

Finally, what is a Majorana spinor in this notation? Well its one for which the Dirac
conjugate and Majorana conjugate coincide:

ψ†γ0 = ψTC .

Taking the transpose leads to ψ∗ = γ2γ5ψ. In terms of two-component spinors this gives:

λ∗ = −σ2χ , χ∗ = σ2λ .

4 Super-Yang Mills

We can now start to construct a version of Yang-Mills theory that has supersymmetry.
Since we must have a gauge field in the adjoint representation we see that supersymmetry
will force us to have a Fermion that is also in adjoint representation. We can then add
Fermions in other representations provided that we also include scalar superpartners for
them.
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4.1 Super-Maxwell

We start our first construction of a supersymmetric theory by looking at a very simple
theory: Electromagnetism coupled to a Majorana Fermion in the adjoint. Since the
adjoint of U(1) is trivial the Fermion is chargeless and we have a free theory!

Why these fields? We just saw that the simplest supermultiplet is massless with 2 real
Fermions and 2 real Bosons on-shell. Furthermore since supersymmetries commute with
any internal symmetries we see that the Fermions need to be in the same representation
of the gauge group as the Bosons. In Maxwell theory the gauge field is in the adjoint
so the Fermion must also be in the adjoint.

Let us now check that the number of degrees of freedom is correct. We fix the
gauge to Lorentz gauge ∂µAµ = 0. Maxwell’s equation is then just ∂2Aµ = 0. However
this only partially fixes the gauge since we can also take Aµ → Aµ + ∂µθ so long as
∂2θ = 0. This allow us to remove one component of Aµ, say A3. However imposing
∂µAµ = 0 provides a further constraint leaving 2 degrees of freedom. In particular in
momentum space choosing pµ = (E, 0, 0, E) we see that pµAµ = E(A0 + A3) = 0 and
hence A0 = A3 = 0 leaving just A1 and A2.

For the Fermion λ we have the Dirac equation γµ∂µλ = 0. In momentum space this
is pµγµλ = 0. Choosing pµ = (E, 0, 0, E) we find

E(γ0 + γ3)λ = 0 (4.75)

For E 6= 0 this implies γ03λ = λ. Since γ03 is traceless and squares to one we see that
this projects out 2 of the 4 components of λ.

The action is

SSuperMaxwell = −
∫
d4x

1

4
FµνF

µν +
i

2
λ̄γµ∂µλ (4.76)

where λ̄ = λTC. Not very exciting except that it has the following symmetry

δAµ = iε̄γµλ

δλ = −1

2
Fµνγ

µνε (4.77)

To see this we first note that, since Cγµ is symmetric,

δλ̄γµ∂µλ = ∂µ(δλ̄γµλ)− ∂µδλ̄γµλ
= ∂µ(δλ̄γµλ) + λ̄γµ∂µδλ (4.78)

We can drop the total derivative term in the action and find

δS = −
∫
d4xF µν∂µδAν + iλ̄γρ∂ρδλ

= −
∫
d4xF µνiε̄γν∂µλ−

i

2
λ̄γρ∂ρFµνγ

µνε (4.79)
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To continue we note that Cγµ is symmetric and γργµν = γρµν + ηρµγν − ηρνγµ. Thus we
have

δS = −
∫
d4x− F µνi∂µλ̄γνε−

i

2
λ̄∂ρFµν(γ

ρµν + 2ηρµγν)ε (4.80)

Now γρµν∂ρFµν = γρµν∂[ρFµν] = 0 so we are left with

δS = −
∫
d4x− F µνi∂̄µλγνε− iε̄∂µFµνγνλ

=
∫
d4x∂µ(iF µνλ̄γνε) (4.81)

= 0

Our next task is to show that these symmetries do indeed close into the supersym-
metry algebra. First we compute the closure on the gauge field

[δ1, δ2]Aµ = iε̄2γµ(
1

2
F λργλρε2)− (1↔ 2)

= iε̄2(
1

2
γµλρ + ηµλγρ)F

λρε1 − (1↔ 2) (4.82)

Now consider the spinor contractions in the first term. We note that

(Cγµλρ)
T = −CγρλµC−1CT = Cγρλµ = −Cγµλρ (4.83)

Thus ε2γµλρε1 is symmetric under 1↔ 2 and hence doesn’t contribute to the commuta-
tor. Hence

[δ1, δ2]Aµ = −2iε̄2γ
νε1Fµν

= (2iε̄2γ
νε1)∂νAµ − ∂µ(2iε̄2γ

νε1Aν) (4.84)

We recognize the first term as a translation and the second a gauge transformation.
Thus the supersymmetry algebra closes correctly on Aµ.

Next we must look at the Fermions. Here we find

[δ1, δ2]λ = −2∂µ(
i

2
ε̄1γνλ)γµνε2 − (1↔ 2)

= −iγµν(ε̄1γν∂µλ)ε2 − (1↔ 2) (4.85)

The problem here is that the spinor index on λ is contracted with ε̄1 on the right
hand side and the free spinor index comes from ε2 whereas the left hand side has a free
spinor coming from λ. There is a way to rewrite the right hand side using the so-called
Fierz identity, valid for any three, anti-commuting, spinors ρ, ψ and χ in four spacetime
dimensions,

(ρ̄ψ)χα = −1

4
(ρ̄χ)ψα −

1

4
(λ̄γ5χ)γ5ψα −

1

4
(ρ̄γµχ) (γµψ)α

+
1

4
(ρ̄γµγ5χ) (γµγ5ψ)α +

1

8
(ρ̄γµνχ) (γµνψ)α (4.86)
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The proof of this identity is given in appendix B and you are strongly encouraged to
read it. The point of this identity is that the free spinor index is moved from being on
χ on the left hand side to being on ψ on the right hand side.

Returning to the case at hand we can take ρ = ε1, χ = ε2 and ψ = γν∂µλ. This leads
to

[δ1, δ2]λ =
i

4
γµν(ε̄1ε2)γν∂µλ+

i

4
γµν(ε̄1γ5ε2)γ5γν∂µλ+

i

4
γµν (ε̄1γρε2) γργν∂µλ

− i
4
γµν (ε̄1γργ5ε2) γργ5γν∂µλ−

i

8
γµν (ε̄1γρσε2) γρσγν∂µλ− (1↔ 2)

(4.87)

Problem: Show that

ε̄1ε2 − ε̄2ε1 = 0

ε̄1γ5ε2 − ε̄2γ5ε1 = 0

ε̄1γργ5ε2 − ε̄2γργ5ε1 = 0 (4.88)

ε̄1γρσε2 + ε̄2γρσε1 = 0

Given this we have

[δ1, δ2]λ =
i

2
(ε̄1γρε2) γµνγργν∂µλ−

i

4
(ε̄1γρσε2) γµνγρσγν∂µλ (4.89)

Now look at the first term

γµνγργν = −γµνγνγρ + 2γµρ

= −3γµγρ + 2γµρ

= −3ηµρ − γµρ (4.90)

= −4ηµρ + γργµ

And the second

γµνγρσγν = [γµν , γρσ]γν + γρσγµνγν

= 2(ηνργµσ − ηµργνσ + ηµσγνρ − ηνσγµρ)γν + 3γρσγµ

= 2γµσγρ + 6ηµργσ − 6ηµσγρ − 2γµργσ + 3γρσγµ (4.91)

= 2γµσρ + 2γµηρσ + 4ηµργσ − 2γµρσ − 2γµηρσ − 4ηµσγρ + 3γρσγµ

= 4γσρµ + 4ηµργσ − 4ηµσγρ + 3γρσγµ

= 4γσργµ + 3γρσγµ

= −γρσγµ (4.92)

In the second line we used a result from the problems that showed − i
2
γµν satisfy the

Lorentz algebra.
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Putting this altogether we find

[δ1, δ2]λ = −2i (ε̄1γ
µε2) ∂µλ+

i

2
(ε̄1γ

νε2) γνγ
µ∂µλ (4.93)

+
i

4
(ε̄1γρσε2) γρσγµ∂µλ

We recognize the first term as a translation (the same one since ε̄1γ
µε2 = −ε̄2γµε1).

Since λ has a trivial gauge transformation we do not expect anything else. But there
clearly is stuff. However this extra stuff vanishes if the Fermion is on-shell: γµ∂µλ = 0.
Thus we say that the supersymmetry algebra closes on-shell.

This is good enough for us since this course is classical (indeed it is often good
enough in the quantum theory too). In fact we can see that it couldn’t have closed
off-shell since the degrees of freedom don’t match. In particular Aµ has four degrees of
freedom but one is removed by a gauge transformation whereas λα also has four degrees
of freedom but none can be removed by a gauge transformation. On-shell however Aµ
has two degrees of freedom and λ also has two.

4.2 Super-Yang-Mills

Our next task is to find an interacting supersymmetric theory. To this end we try to
generalize the previous action to an arbitrary Lie group G. In particular we take have
a gauge field Aµ and Fermion λ, both of which are in the adjoint representation

SsusyYM = − 1

g2
YM

∫
d4x

1

4
Tr(Fµν , F

µν) +
i

2
Tr(λ̄, γµDµλ) (4.94)

with Dµλ = ∂µλ− i[Aµ, λ]. The natural guess for the supersymmetry transformation is

δAµ = iε̄γµλ

δλ = −1

2
Fµνγ

µνε (4.95)

Note that although this looks the same as in the Abelian case above it is in fact rather
complicated and interacting. Nevertheless the steps to prove invariance are very similar
but more involved.

The first thing to note is that there is a term in δS coming from λ̄γµ[δAµ, λ] that is
cubic in λ. This is the only term that is cubic in λ and hence must vanish:

Tr(λ̄, γµ[(ε̄γµλ), λ]) = 0 (4.96)

Problem: Using the Fierz identity show that, in four dimensions,

Tr(λ̄, γµ[(ε̄γµλ), λ]) = fabcλ̄cγ
µ(ε̄γµλa)λb = 0. (4.97)
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This is a crucial condition, without it we would be sunk. In fact it is only true in a few
dimensions (D = 3, 4, 6, 10) and hence what is called pure super-Yang Mills (i.e. super
Yang-Mills with the minimum number of fields) only exists in these dimensions. Super-
Yang-Mills theories exist in lower dimensions but they always contain additional fields
such as scalars (you can construct them by compactification one of the pure theories).
Ultimately the reason for this is that these are the only dimensions where one can match
up the number of Bose and Fermi degrees of freedom on-shell.

Okay now we can proceed. We first note that

Tr(δ̄λ, γµDµλ) = ∂µTr(δ̄λ, γµλ) + Tr(λ̄, γµDµδλ) (4.98)

We have see that this is true when Dµ = ∂µ so we now need to check the Aµ term. The
left hand side gives

−iTr(δ̄λ, γµ[Aµ, λ]) = iTr([Aµ, λ̄], γµδλ)

= −iTr([λ̄, Aµ], γµδλ) (4.99)

= −iTr(λ̄, γµ[Aµ, δλ])

and this is indeed the right hand side. Note that in the first line we used the fact that
Cγµ is symmetric to interchange the two spinors with a minus sign and in the last line
we used the fact that Tr([A,B], C) = Tr(A, [B,C])

Thus we find that, up to boundary terms,

δS = −
∫
d4x

1

2
Tr(F µν , δFµν) + iTr(λ̄, γρDρδλ)

Next we need to compute

δFµν = ∂µδAν − i[Aµ, δAν ]− (µ↔ ν)

= iε̄γνDµλ− (µ↔ ν) (4.100)

Thus we have

δS = −
∫
d4xiTr(F µν , ε̄γνDµλ)− i

2
Tr(λ̄, γρDργµνF

µνε) (4.101)

Again we can use the identity

γργµν = γρµν + ηρµγν − ηρνγµ (4.102)

so that we find

δS = −
∫
d4x− iTr(F µν , Dµλ̄γνε)− iTr(λ̄, DµF

µνγνε)

− i
2

Tr(λ̄, γρµνDρFµνε) (4.103)
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The first line adds up to a total derivative and hence can be dropped. This leaves us
the the final line. This indeed vanishes because of the so-called Bianchi identity

D[µFνλ] = 0 (4.104)

Problem: Prove the Bianchi identity D[µFνλ] = 0, where DµFνλ = ∂µFνλ − i[Aµ, Fνλ].

Thus we have established that the action is supersymmetric. It is also important to
show that the supersymmetry variations close (on-shell). Let us consider the gauge field
first. Little changes from the above Abelian calculation and we find

[δ1, δ2]Aµ = −(2iε̄2γ
νε1)Fµν

= 2i(ε̄2γ
νε1)∂νAµ −Dµ(2iε̄2γ

νε1Aν) (4.105)

Here we have used the fact that Fµν = DµAν − ∂νAµ.

Problem: Show that the transformations (7.50) close on-shell on the Fermions to
Poincare transformations and gauge transformations.

4.3 N = 4 Super-Yang-Mills

The theory we have constructed has so-called N = 1 Supersymmetry because there is
a single supersymmetry generator Q. On the other hand this sometimes called N = 4
supersymmetry since Q is a spinor which has four components Qα, α = 1, 2, 3, 4 in four
dimensions. As we have seen the dimension of the spinor representions various from
dimension to dimension. In particular above four dimensions there will be more than
N = 4 supersymmetries. This suggests that even in four dimensions one can have more
than N = 4. In fact the maximum number of supersymmetries is limit to N = 16 which
means that there must be four separate supersymmetries QI

α, I = 1, 2, 3, 4.
There is essentially a unique theory with such maximal supersymmetry and which

doesn’t include gravity (basically because with more supersymmetries one requires
higher spins and hence requires gravity). This theory was predicted to exist by string
theory and constructed in the 1970’s. In the 1980’s it was shown that this theory is
a conformal field theory, i.e.that it is a finite quantum field theory - the first known
example. It has become of central importance in the last 10 or so years as it is the
prime example of the AdS/CFT correspondence. Thus it is a very interesting theory to
study.

What is the easiest way to construct such a theory? Well we can start with super-
Yang-Mills is a higher dimension where the spinors have more components and 16 is
the number of components of a Majorana-Weyl spinor in 10 dimensions (recall that a
general Dirac spinor in 10 dimensions has 32 complex components, Majorana reduces
this to 32 real components and Weyl then reduces this to 16).
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In 10 dimensions the super-Yang-Mills action is

SsusyYM = − 1

g2
YM

∫
d10x

1

4
tr(Fmn, F

mn) +
i

2
Tr(Λ̄,ΓmDmΛ) (4.106)

This is just as before except that the indices m,n,= 0, ..., 9 and the spinors Λ and Γm
are those of 10 dimensions, i.e. 32-component. As mentioned we can chose a Majorana
basis and also, simultaneously, restrict to Weyl spinors Γ11Λ = Λ, where Γ11 = Γ0Γ1...Γ9

is the 10-dimensional analogue of γ5.
To prove that this is supersymmetric we can follow the same argument that we did

for the four-dimensional case. The variations are taken to be

δAm = iε̄ΓmΛ

δΛ = −1

2
FmnΓmnε . (4.107)

Note that the preserve Γ11Λ = Λ we must also impose

Γ11ε = ε

The only time that the dimension of spacetime showed up was in the cubic variation.
As mentioned above, in 10-dimensions, we also have that

Tr(Λ̄,Γm[(ε̄ΓmΛ),Λ]) = fabcΛ̄cΓ
m(ε̄ΓmΛa)Λb = 0. (4.108)

provided that Γ11Λ = Λ and Γ11ε = ε .

Problem: Show this. You may assume the Fierz transformation in 10 dimensions is
(why?)

(χ̄ψ)λ = − 1

32

[
(χ̄λ)ψ + (χ̄Γ11λ)Γ11ψ + (χ̄Γmλ)Γmψ − 1

2!
(χ̄Γmnλ)Γmnψ

−(χ̄ΓmΓ11λ)ΓmΓ11ψ −
1

3!
(χ̄Γmnpλ)Γmnpψ − 1

2!
(χ̄ΓmnΓ11λ)ΓmnΓ11ψ

+
1

4!
(χ̄Γmnpqλ)Γmnpqψ +

1

4!
(χ̄ΓmnpΓ11λ)ΓmnpΓ11ψ +

1

5!
(χ̄Γmnpqrλ)Γmnpqrψ

+
1

4!
(χ̄ΓmnpqΓ11λ)ΓmnpqΓ11ψ

]
(4.109)

Thus the 10-dimensional action is supersymmetric. In fact we should also check that
the supersymmetry closes on-shell. The calculation for the gauge fields is just as it was
in 4-dimensions. For the Fermions we again need to use the Fierz transformation. This
introduces several more terms but nevertheless it all works out (this is to be expected
as the Lagrangian is invariant, hence what ever the supersymmetry algebra closes into
must be a symmetry of the Lagrangian too).
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Problem: Show that in ten-dimensions, with Γ11Λ = Λ, the transformations close on-
shell on Λ.

Our next task is to dimensionally reduce this theory to 4 dimensions. All this means
is that we simply imagine that there is no motion along the x4, x5, ..., x9 directions. This
is related to the idea of compactification except that we don’t imagine there is an infinite
tower of Kaluza-Klein states. We are just using this as a trick to obtain a theory in 4
dimensions with N = 4 supersymmetry.

Let us consider the Bosons. We have the 10-dimensional adjoint-valued gauge vector
field Am. From the 4-dimensional point of view this can be viewed as a vector gauge field
Aµ, µ = 0, 1, 2, 3 along with 6 scalar adjoint-valued fields φA = AA, A = 4, 5, .., 9. We
note that if we assume that there are no derivatives then under a gauge transformation
(that only depends on xµ) we have

A′µ = −i∂µgg−1 + gAµg φ′A = gφg−1 (4.110)

Thus indeed the components φA = AA behave as scalar fields from the 4-dimensional
point of view. In addition the field strength reduces to

Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ]
FµA = ∂µφA − i[Aµ, φA] = DµφA (4.111)

FAB = −i[φA, φB]

The 10-dimensional kinetic term can be written as

1

4
Tr(Fmn, F

mn) =
1

4
Tr(Fµν , F

µν) +
1

2

∑
A

Tr(DµφA, D
µφA)− 1

4

∑
A,B

Tr([φA, φB], [φA, φB])

(4.112)
Thus the Bosonic part of the action reduces that of a gauge field and six adjoint-valued
scalars in 4 dimensions, along with the potential

V = −1

4

∑
A,B

Tr([φA, φB], [φA, φB]) . (4.113)

Next we need to look at the Fermions. We can write the Fermionic term as

i

2
Tr(Λ̄,ΓmDmΛ) =

i

2
Tr(Λ̄,ΓµDµΛ) +

1

2
Tr(Λ̄,ΓA[φA,Λ]) (4.114)

The second term is a Yukawa-type term in 4 dimensions. The 4-dimensional action of
N = 4 super-Yang-Mills is

SN=4SYM = − 1

g2

∫
d4x

1

4
Tr(Fµν , F

µν) +
1

2

∑
A

Tr(DµφA, D
µφA) +

i

2
Tr(Λ̄,ΓµDµΛ)

+
1

2
Tr(Λ̄,ΓA[φA,Λ])− 1

4

∑
A,B

Tr([φA, φB], [φA, φB]) (4.115)
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In principle we are done. However it is a good idea to rewrite the Fermion Λ in terms
of 4-dimensional spinors.

To reduce the Fermions we decompose the 10-dimensional Clifford algebra in terms
of the 4-dimensional γµ’s as

Γµ = γµ ⊗ 1

ΓA = γ5 ⊗ ρA (4.116)

Here ρA are a Euclidean Clifford algebra in 6-dimensions which we take to be pure imag-
inary so that Γm are Majorana (recall that γ5 is pure imaginary in a four-dimensional
Majorana basis). This is indeed possible and is called a pseudo-Majorana representation.
For example we could take

ρ1 = 1⊗ 1⊗ σ2 ρ2 = 1⊗ σ2 ⊗ σ3

ρ3 = σ2 ⊗ σ3 ⊗ σ3 ρ4 = σ2 ⊗ σ1 ⊗ σ3 (4.117)

ρ5 = σ3 ⊗ σ2 ⊗ σ1 ρ6 = σ2 ⊗ 1⊗ σ1.

Since σ2 is pure imaginary and σ1 and σ3 are real we have a pseudo-Majorana represen-
tation of 8× 8 matrices.

Similarly we decompose spinors as

Λ = λI ⊗ ηI (4.118)

ε = εI ⊗ ηI

where ηI are a basis of spinors in six-dimensions (which are 8-dimensional). However
we note that we require Λ and ε to be chiral with respect to Γ11 = −iγ5⊗ ρ1...ρ6. Thus
the chirality of ηI with respect to iρ1...ρ6 needs to be correlated with the chirality of λI
with respect to γ5. This projects out half of the six-dimensional spinors and so there
are only four independent values of I. To see this we note that since the ηI are a basis
we can write

−iρ1...ρ6ηI = RI
JηJ

for some pure imaginary 8× 8 matrix RI
J . Thus the chirality constraint becomes

λI = γ5RJ
IλJ

A similar constraint applies to εI too. This means that there are no longer 8 independent
λI and εI but rather just 4. Finally we assume that these are normalized to (ηI)TηJ =
δIJ .

We can now compute

Λ̄ΓµDµΛ = λTI ⊗ (ηI)T (Cγµ ⊗ 1)DµλJ ⊗ ηJ
= δIJ λ̄Iγ

µDµλJ (4.119)
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and

Λ̄ΓA[φA,Λ] = λTI ⊗ (ηI)T (Cγ5 ⊗ ρA)[φA, λJ ⊗ ηJ ]

= (ηI)TρAη
J λ̄Iγ5[φA, λJ ] (4.120)

= ρIJA λ̄Iγ5[φA, λJ ]

where ρIJA = (ηI)TρAη
J are the chiral-chiral matrix components of ρA. Thus the action

can be written as

SN=4SYM = − 1

g2

∫
d4x

1

4
Tr(Fµν , F

µν) +
1

2

∑
A

Tr(DµφA, D
µφA) +

i

2
δIJTr(λ̄I , γ

µDµλJ)

+
1

2
ρIJA Tr(λ̄Iγ5[φA, λJ ])− 1

4

∑
A,B

Tr([φA, φB], [φA, φB]) (4.121)

Note that we have raised and lowed IJ indices freely with δIJ and δIJ .
Our last task is to write the supersymmetry transformations in terms of 4-dimensional

spinors.

Problem: Show that the ten-dimensional supersymmetry

δAm = iε̄ΓmΛ

δΛ = −1

2
FmnΓmnε . (4.122)

becomes

δAµ = iε̄IΓµλ
I

δφA = −ε̄Iγ5λJρ
IJ
A (4.123)

δλI = −1

2
Fµνγ

µνεI − γµγ5Dµφ
AρIJA εJ +

i

2
[φA, φB]ρJIABεI .

where ρJIAB = (ηJ)TρABη
I . Here we see that there are indeed 4 supersymmetry parame-

ters εI .
Thus we find a theory in 4 dimensions with one vector field (spins = ±1) 4 Fermions

(spin = ±1/2) and 6 scalars (spin 0). In fact this is what we expect if we generalize our
previous discussion to N = 4 supersymmetry. In the fixed (massless) momentum frame
there are 4× 4 = 16 supersymmetry generators:

{QI
α, Q

J
β} = 2E(1− γ01)αβδ

IJ

However since γ01 can be diagonalized to the form diag(1, 1,−1,−1) we see that we can
find 8 linear combinations of the QI

α, which we denote by Qα̈ that satisfy {Qα̈, Qβ̈} = 0.
These must act trivially Qα̈|state〉 = 0. Thus there are 8 nontrivial Q′s that we denote
by Qα̇, α̇ = 1, ..., 8 and satisfy

{Qα̇, Qβ̇} = 4Eδα̇β̇
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If we rewrite these as

Q1 = Q1 + iQ2 Q2 = Q3 + iQ4 Q3 = Q5 + iQ6 Q4 = Q7 + iQ8

then the algebra becomes

{QI ,QJ} = {Q†I ,Q
†
J} = 0 {QI ,Q†J} = 4EδIJ

This is four copies of the algebra of Fermionic harmonic oscillator with creation and
annihilation operators. To construct the represention we start with a highest spin state
|s >. The QI lower the spin by 1/2 whereas the Q†I raise it. Thus Q†I |s >= 0. Thus the
states and their helicites are obtained by acting on |s > with QI :

s |s > (4.124)

s− 1/2 QI |s > (4.125)

s− 1 QIQJ |s > (4.126)

s− 3/2 QIQJQK |s > (4.127)

s− 2 Q1Q2Q3Q4|s > (4.128)

Note that since the QI anticommute these states must be antisymmetric in I, J,K.
Thus there are 1, 4, 6, 4, 1 states in each row respectively leading to 24 = 16 states. Note
that we require |s| ≤ 1 to remain in field theory without gravity. Therefore we see that
we must have precisely s = 1 in order that the lowest state has s ≥ −1. We then find
a vector (with states |1 > and | − 1 >), 6 scalars (states |0 >) and 4 Fermions (states
|1/2 >).

5 Appendix A: Conventions

In these notes we are generally in 4 spacetime dimensions labeled by xµ, µ = 0, 1, 2, ..., 3.
When we only want to talk about the spatial components we use xi with i = 1, ..., 3.
We use the the “mostly plus” convention for the metric:

ηµν =


−1

1
1

1

 (5.1)

Spinor indices will in general be denoted by α, β = 1, ..., 4. When we talk about Weyl
spinors we will use the spinor indices a, ȧ = 1, 2. We will briefly talk about more general
D dimensions. In this case µ = 0, 1, 2, ..., D − 1 and α, β = 1, ..., 2[D/2].

We also assume, according to the spin-statistics theorem, that spinorial quantities
and fields are Grassmann variables, i.e. anti-commuting. We will typically use Greek
symbols for Fermionic Grassmann fields, ψ, λ, ... and Roman symbols for Bosonic c-
number fields.
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6 Appendix B: The Fierz Transformation

The γ-matrices have several nice properties. Out of them one can construct the addi-
tional matrices

1, γµ, γµγD+1, γµν , γµνγD+1, .... (6.1)

where γµνλ... is the anti-symmetric product over the given indices with weight one, e.g.

γµν =
1

2
(γµγν − γνγµ) (6.2)

Because of the relation γ0γ1...γD−1 ∝ γD+1 not all of these matrices are independent.
The list stops when the number of indices is bigger than D/2. It is easy to convince
yourself that the remaining ones are linearly independent.

Problem: Using the fact that < M1,M2 >= Tr(M †
1M2) defines a complex inner prod-

uct, convince yourself that the set (6.1), where the number of spacetime indices is no
bigger than D/2, is a basis for the space of 2[D]/2 × 2[D]/2 matrices ([D/2] is the integer
part of D/2).

Thus any matrix can be written in terms of γ-matrices. In particular one can express

δβαδ
δ
γ =

∑
ΓΓ′

cΓΓ′(γΓ) β
γ (γΓ′)

δ
α (6.3)

for some constants cΓΓ′ . Here Γ and Γ′ are used as a indices that range over all inde-
pendent γ-matrix products in (6.1).

To proceed one must determine the coefficients cΓΓ′ . To do this we simply multiply
(6.3) by (γΓ′′)

γ
β which gives

(γΓ′′)
δ
α =

∑
ΓΓ′

cΓΓ′Tr(γΓγΓ′′)(γΓ′)
δ
α (6.4)

Now we have observed that Tr(γΓγΓ′′) = 0 unless Γ = Γ′′ so we find

(γΓ′′)
δ
α =

∑
Γ′′Γ′

cΓ′′Γ′Tr(γ2
Γ′′)(γΓ′)

δ
α (6.5)

From here we see that cΓ′′Γ′ = 0 unless Γ′ = Γ′′ and hence

cΓΓ =
1

Tr(γ2
Γ)

= ±Γ
1

2[D/2]
(6.6)

Here the ±Γ arises because γ2
Γ = ±1 and 2[D/2] = Tr(1) is the dimension of the repre-

sentation of the Clifford algebra.
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The point of doing all this is that the index contractions have been swapped and
hence one can write

(λ̄ψ)χα = λ̄γψδχβδ
β
αδ

δ
γ

= −
∑
Γ

cΓΓλ̄
γ(γΓ) β

γ χβ(γΓ) δ
α ψδ

= − 1

2[D/2]

∑
Γ

±Γ

(
λ̄γΓχ

)
(γΓψ)α (6.7)

here the minus sign out in front arises because we must interchange the order of ψ and
χ which are anti-commuting. This is called a Fierz rearrangement and it has allowed us
to move the free spinor index from χ to ψ. Its draw back is that it becomes increasingly
complicated as the spacetime dimension D increases, but generally speaking there isn’t
an alternative so you just have to slog it out.

In particular consider four dimensions. The independent matrices are

1, γ5, γµ, γµγ5, γµν (6.8)

One can see that this is the case by noting that γµν5 = i
2
εµνλργ

λρ. You can check that
the Fierz identity is

(λ̄ψ)χα = −1

4
(λ̄χ)ψα −

1

4
(λ̄γ5χ)γ5ψα −

1

4

(
λ̄γµχ

)
(γµψ)α (6.9)

+
1

4

(
λ̄γµγ5χ

)
(γµγ5ψ)α +

1

8

(
λ̄γµνχ

)
(γµνψ)α

note the extra factor of 1
2

in the last term that is there is ensure that γµν and γνµ don’t
contribute twice. We will use this at various points in the course.

Problem: Show that in three dimensions the Fierz rearrangement is

(λ̄ψ)χα = −1

2
(λ̄χ)ψα −

1

2

(
λ̄γµχ

)
(γµψ)α (6.10)

Using this, show that in the special case that λ = χ one simply has

(λ̄ψ)λα = −1

2
(λ̄λ)ψα (6.11)

for Majorana spinors. Convince yourself that this is true by considering the explicit 3D
γ-matrices above and letting

λ =
(
λ1

λ2

)
, ψ =

(
ψ1

ψ2

)
(6.12)

What is the Fierz rearrangement in two dimensions (Hint: this last part should take
you very little time)?
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7 Appendix C: Solutions to Problems

Problem: Using

δxµ = iaνPν(x
µ) +

i

2
ωνλMνλ(x

µ) (7.1)

and

[Pµ, Pν ] = 0

[Pµ,Mνλ] = −iηµνPλ + iηµλPν

[Mµν ,Mλρ] = −iηνλMµρ + iηµλMνρ − iηµρMνλ + iηνρMµλ

(7.2)

show that

(δ1δ2 − δ2δ1)xµ = (ωµ1 λa
λ
2 − ω

µ
2 λa

λ
1) + (ωµ1 λω

λ
2 ν − ω

µ
2 λω

λ
1 ν)x

ν (7.3)

is indeed reproduced.

Solution: Just calculate

[δ1, δ2] = −aµ1aν2[Pµ, Pν ]−
1

2
ωµν1 aλ2 [Mµν , Pλ]−

1

2
aλ1ω

µν
2 [Pλ,Mµν ]−

1

4
ωµν1 ωλρ2 [Mµν ,Mλρ]

= − i
2
ωµν1 a2µPν +

i

2
ωµν1 a2νPµ +

i

2
ωµν2 a1µPν −

i

2
ωµν2 a1νPµ

+
i

4
(ωµλ1 ω ν

2λ − ω
λµ
1 ω ν

2λ + ωλµ1 ω ν
2 λ − ω

µλ
1 ω ν

2 λ)Mµν

= i(ωµν1 a2ν − ωµν2 a1ν)Pµ +
i

2
(ωµλ1 ω ν

2λ − ω
µλ
2 ω ν

1λ )Mµν (7.4)

Comparing this with

δxµ = iaνPν(x
µ) +

i

2
ωνλMνλ(x

µ) (7.5)

tells us that

aµ = (ωµ2 λa
λ
1 − ω

µ
1 λa

λ
2) , ωµν = (ωµ1 λω

λ
2 ν − ω

µ
2 λω

λ
1 ν) (7.6)

as required.

Problem: Verify that the two representations

(Mµν)
λ
ρ = iηµρδ

λ
ν − iδλµηνρ

(Mµν)
β
α =

i

2
(γµν)

β
α = − i

4
(γµγν − γµγν) β

α

(7.7)
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do indeed satisfy the Lorentz algebra

[Mµν ,Mλρ] = −iηνλMµρ + iηµλMνρ − iηµρMνλ + iηνρMµλ (7.8)

Solution: In the first case we find

(Mµν)
σ
τ (Mλρ)

τ
θ = (iηµτδ

σ
ν − iδσµηντ )(iηλθδτρ − iδτληρθ)

= −ηµρηλθδσν + ηµλδ
σ
ν ηρθ + δσµηνρηλθ − δσµηνληρθ (7.9)

and

(Mλρ)
σ
τ (Mµν)

τ
θ = (iηλτδ

σ
ρ − iδσληρτ )(iηµθδτν − iδτµηνθ)

= −ηλνηµθδσρ + ηλµδ
σ
ρ ηνθ + δσληρνηµθ − δσληρµηνθ (7.10)

Combining these gives

[Mµν ,Mλρ]
σ
θ = −ηµρηλθδσν + ηµλδ

σ
ν ηρθ + δσµηνρηλθ − δσµηνληρθ

+ηλνηµθδ
σ
ρ − ηλµδσρ ηνθ − δσληρνηµθ + δσληρµηνθ

= −iηνλ(iηµθδσρ − iδσµηρθ) + iηνρ(iδ
σ
ληµθ − iδσµηλθ)

−iηµρ(iδσληνθ − iηλθδσν ) + iηµλ(iδ
σ
ρ ηνθ − iδσν ηρθ) (7.11)

which is the correct relation.
In the second case we first note that

γµνγλρ = γµνλρ + ηνλγµρ − ηµλγνρ + ηµργνλ − ηνργµλ + ηνληµρ − ηνρηµλ
γλργµν = γλρµν + ηρµγλν − ηλµγρν + ηλνγρµ − ηρνγλµ + ηρµηλν − ηνρηµλ (7.12)

To prove this you can either work it out using the Clifford relation {γµ, γν} = 2ηµν or
simply test the various cases µ = λ, ν = ρ, µ = λ, ν 6= ρ..... From this wee see that

[γµν , γλρ] = 2ηνλγµρ − 2ηµλγνρ + 2ηµργνλ − 2ηνργµλ (7.13)

Multiplying through by ( i
2
)2 we find

[− i
2
γµν ,−

i

2
γλρ] = iηνλ

i

2
γµρ − iηµλ

i

2
γνρ + iηµρ

i

2
γνλ − iηνρ

i

2
γµλ (7.14)

which is indeed the correct relation.

Problem: Show that Vµ = λ̄γµψ is a Lorentz vector, i.e. show that δVµ = ω ν
µ Vν under

the transformation δψ = 1
4
ωλργλρψ.

Solution: We have that

δVµ = δλ̄γµψ + λ̄γµδψ

= −1

4
ωλρλ̄(γλργµ − γµγλρ)ψ (7.15)
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So we need to evaluate [γλρ, γµ] to this end we observe that

γλργµ = γλρµ + ηρµγλ − ηλµγρ
γµγλρ = γµλρ + ηλµγρ − ηρµγλ (7.16)

why (think about the possible cases)? This implies that

[γλρ, γµ] = 2ηρµγλ − 2ηλµγρ (7.17)

Putting this back in leads to

δVµ = −1

4
ωλρλ̄(2ηρµγλ − 2ηλµγρ)ψ

= ω ρ
µ λ̄γρψ (7.18)

Problem: Show that, for a general Dirac spinor in any dimension, λTCψ is Lorentz
invariant, where C is the charge conjugation matrix.

Solution: Under a Lorentz transformation

δψ =
1

4
ωµνγµνψ , δλ =

1

4
ωµνγµνλ , (7.19)

Therefore

δλT =
1

4
ωµνλTγTν γ

T
µ =

1

4
λTωµνCγνµC

−1 = −1

4
λTωµνCγµνC

−1 (7.20)

and hence

δλTC = −1

4
λTωµνCγµν (7.21)

Finally we see that

δ(λTCψ) = δλTCψ + λTCδψ

= −1

4
λTωµνCγµνψ +

1

4
λTCωµνγµνψ

= 0 (7.22)

Problem: Why are their factors of i in the Fermionic terms of the action.

Solution: This is to ensure that the action is real. Consider the mass term

(imψ̄ψ)∗ = −im(ψ∗αC
αβψβ)∗ = −imψ∗β(Cαβ)∗ψα = imψ∗βC

βαψα = imψ̄ψ (7.23)
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where we have used that C is anti-Hermitian. Next consider the kinetic terms

Tr(iψ̄, γµDµψ)∗ = −ihab(∂µψbβ − iψcβArµ(Tr)
b
c)
∗(Cγµ)αβψaα

= −ihab∂µψ̄bγµψa + habψ
c∗
β A

r
µ(Tr)c

b(Cγµ)βαψaα

= −ihab∂µ(ψ̄aγµψb) + ihabψ̄
aγµ∂µψ

b + hbcψ̄
bγµArµ(Tr)

c
aψ

a

= −ihab∂µ(ψ̄aγµψb) + ihcdψ̄
cγµDµψ

d

∼= Tr(iψ̄, γµDµψ)

Here we’ve used the fact the fact that (Tr)
a
b is Hermitian and also that Cγµ real (we

are in a Majorana basis) and symmetric:

(Cγµ)T = (γµ)TC† = −CγµC−1CT = Cγµ (7.24)

Problem: Show that in four-dimensions, where Qα is a Majorna spinor, the supersym-
metry algebra

{Qα, Qβ} = −2(γµC−1)αβPµ (7.25)

can be written as

{QWα, QWβ} = 0

{Q∗Wα, Q
∗
Wβ} = 0

{QWα, Q
∗
Wβ} = −((1 + γ5)γµC

−1)αβPµ

{Q∗Wα, QWβ} = −((1− γ5)γµC
−1)αβPµ

(7.26)

where QWα is a Weyl spinor and Q∗Wα is its complex conjugate. (Hint: Weyl spinors
are chiral and are obtained from Majorana spinors QM through QW = 1

2
(1 + γ5)QM ,

Q∗W = 1
2
(1− γ5)QM .)

Solution: By definition we have Qα = QWα +Q∗Wα and hence

{QWα, QWβ}+ {Q∗Wα, QWβ}+ {QWα, Q
∗
Wβ}+ {Q∗Wα, Q

∗
Wβ} = −2(γµC−1)αβPµ (7.27)

Next we note that
(1∓ γ5)(1± γ5) = 1− γ2

5 = 0 (7.28)

and
1

2
(1± γ5)

1

2
(1± γ5) =

1

4
(1± 2γ5 + γ2

5) =
1

2
(1 + γ5) (7.29)

Thus if we multiply the left and right hand side by 1
2
(1 + γ5) α

γ and 1
2
(1 + γ5) β

δ we find

{QWγ, QWδ} = −1

2
((1 + γ5)γµC−1)γβ(1 + γ5) β

δ Pµ

= −1

2
((1 + γ5)γµC−1)γβ(1− γ5)βδPµ

(7.30)

38



where we have used the fact that γ5 is antisymmetric (recall it is pure imaginary and
Hermitian). The right hand side vanishes because it is equal to (1 +γ5)γµC−1(1−γ5) =
(1 + γ5)(1− γ5)γµC−1 = 0. Thus

{QWγ, QWδ} = 0 (7.31)

Similarly multiplying by 1
2
(1− γ5) α

γ and 1
2
(1− γ5) β

δ shows that {Q∗Wγ, Q
∗
Wδ} = 0

Next we multiply through by 1
2
(1 + γ5) α

γ and 1
2
(1− γ5) β

δ to find

{QWγ, Q
∗
Wδ} = −1

2
((1 + γ5)γµC−1)γβ(1− γ5) β

δ Pµ

= −1

2
((1 + γ5)γµC−1(1 + γ5))γδPµ

= −((1 + γ5)γµC−1)γδPµ

(7.32)

Similarly we find

{Q∗Wγ, QWδ} = −1

2
((1− γ5)γµC−1)γβ(1 + γ5) β

δ Pµ

= −1

2
((1− γ5)γµC−1(1− γ5))γδPµ

= −((1− γ5)γµC−1)γδPµ

(7.33)

Problem: Show that

(σµ)aḃ =
(
δaḃ, σ

i
aḃ

)
(σ̄µ)aḃ =

(
δaḃ,−σ

i
aḃ

)
(7.34)

Solution: Since C−1 = −γ0 we have that

γ0C
−1 =

(
1 0
0 1

)
γiC

−1 =
(
σi 0
0 −σi

)
(7.35)

Thus

1

2
(1 + γ5)γ0C

−1 =
(

1 0
0 0

)(
1 0
0 1

)
=
(

1 0
0 0

)
1

2
(1 + γ5)γiC

−1 =
(

1 0
0 0

)(
σi 0
0 −σi

)
=
(
σi 0
0 0

)
(7.36)
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By definition the top left entry of these matrices are (σµ)aḃ and so

(σ0)aḃ = δaḃ (σi)aḃ = σi
aḃ

(7.37)

The last equation is an identity by construction. Similarly one has

1

2
(1− γ5)γ0C

−1 =
(

0 0
0 1

)(
1 0
0 1

)
=
(

0 0
0 1

)
1

2
(1− γ5)γiC

−1 =
(

0 0
0 1

)(
σi 0
0 −σi

)
=
(

0 0
0 −σi

)
(7.38)

and hence
(σ̄0)ȧb = δȧb (σ̄i)ȧb = −σiȧb (7.39)

Problem: Show that

ε̄1ε2 − ε̄2ε1 = 0

ε̄1γ5ε2 − ε̄2γ5ε1 = 0

ε̄1γργ5ε2 − ε̄2γργ5ε1 = 0 (7.40)

ε̄1γρσε2 + ε̄2γρσε1 = 0

Solution: In all these cases we are looking at something of the form

ε̄1Γε2 = ε1α(CΓ)αβε1 (7.41)

Since ε1αε2β = −ε2αε1β we see that these identities correspond to whether or not CΓ is
anti-symmetric (first three) or symmetric (last one).

In the first case we have Γ = 1 and hence CΓ = C is anti-symmetric. Similarly in
the second case we have (Cγ5)T = γT5 C

T = γ5C = −Cγ5 is antisymmetric. In the third
case Γ = γργ5. Thus

(Cγργ5)T = γ5(γρ)
TC = −γ5(CγρC

−1)C = −Cγργ5 (7.42)

as required. In the fourth case we have Γ = γρσ and so

(Cγρσ)T = −1

2
(γσ)T (γρ)

TC +
1

2
(γρ)

T (γρ)
TC

= −1

2
(CγσC

−1)(CγρC
−1)C +

1

2
(CγρC

−1)(CγσC
−1)C (7.43)

= −Cγσρ
= Cγρσ

Problem: Using the Fierz identity show that, in four dimensions,

Tr(λ̄, γµ[(ε̄γµλ), λ]) = fabcλ̄cγ
µ(ε̄γµλa)λb = 0. (7.44)
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Solution: We rewrite this as

fabcλ̄cγ
µ(ε̄γµλa)λb = −fabcλ̄cγµ(λ̄aγµε)λb

=
1

4
fabc

∑
Γ

λ̄cγ
µ(λ̄aΓλb)Γγµε (7.45)

Here have used the Fierz identity and the sum is over all the relevant matrices: Γ ∝
1, γ5, γν , γν5, γνλ, with the correct signs and factors assumed. However since fabc is anti-
symmetric in a, b the only terms that contribute are where (CΓ)T = CΓ. This reduces
the sum to just Γ = γµ and Γ = γµλ restoring the right factors we have

fabcλ̄cγ
µ(ε̄γµλa)λb =

1

4
fabcλ̄cγ

µ(λ̄aγνλb)γ
νγµε

−1

8
fabcλ̄cγ

µ(λ̄aγνλλb)γ
νλγµε (7.46)

Next we need the following two identities

γµγνγµ = γµ(2δνµ − γµγν)
= 2γν − 4γν (7.47)

= −2γν

and

γµγνλγµ = γµ(γµγ
νλ + [γνλ, γµ])

= 4γνλ + 2γµ(δλµγ
ν − δνµγλ) (7.48)

= 4γνλ + 4γλν

= 0

Thus we find

fabcλ̄cγ
µ(ε̄γµλa)λb = −1

2
fabcλ̄cγ

ν(λ̄aγνλb)ε

=
1

2
fabcε̄γνλc(λ̄aγνλb)

A quick inspection shows that the right hand side is −1/2 times the left hand side. Thus
they must both vanish, as required.

Problem: Prove the Bianchi identity D[µFνλ] = 0, where DµFνλ = ∂µFνλ − i[Aµ, Fνλ].

Solution: It is straight forward to expand this

3!D[µFνλ] = ∂µ(∂νAλ − ∂λAν − i[Aν , Aλ])− i[Aµ, ∂νAλ − ∂λAν − i[Aν , Aλ]])± cyclic

= −i[∂µAν , Aλ]− i[Aν , ∂µAλ]− i[Aµ, ∂νAλ] + i[Aµ, ∂λAν ]− [Aµ, [Aν , Aλ]]± cyclic

= i[Aλ, ∂µAν ]− i[Aν , ∂µAλ]− i[Aµ, ∂νAλ] + i[Aµ, ∂λAν ]± cyclic (7.49)

= 2i[Aλ, ∂µAν ]− 2i[Aµ, ∂νAλ]± cyclic

= 0
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In the second line we used the fact that second derivatives commute and the third line
the [Aµ, [Aν , Aλ]] terms vanish by the Jacobi identity. In the last two lines we used the
cyclic sum to swap the indices.

Problem: Show that the transformations

δAµ = iε̄γµλ

δλ = −1

2
Fµνγ

µνε (7.50)

close on-shell on the Fermions to Poincare transformations and gauge transformations.

Solution: First compute

[δ1, δ2]λ = −1

2
δ1Fµνγ

µνε2 − (1↔ 2)

Now

δ1Fµν = ∂µδ1Aν − ∂νδ1Aµ − i[δ1Aµ, Aν ]− i[Aµ, δ1Aν ]

= Dµδ1Aν −Dνδ1Aµ (7.51)

Thus we find

[δ1, δ2]λ = −Dµδ1Aνγ
µνε2 − (1↔ 2)

= −i(ε̄1γνDµλ)γµνε2 − (1↔ 2) (7.52)

The rest just follows the previous discussion in the Abelian case with ∂µ → Dµ. As a
result of Feirz we find

[δ1, δ2]λ = −2i (ε̄2γ
µε1)Dµλ−

i

2
(ε̄1γ

νε2) γνγ
µDµλ (7.53)

− i
4

(ε̄1γρσε2) γρσγµDµλ

The on-shell equation is γµDµλ = 0 so that, on-shell, we find

[δ1, δ2]λ = −2i (ε̄2γ
µε1) ∂µλ+ 2 (ε̄2γ

µε1) [Aµ, λ] (7.54)

Here the first term is a translation and the second term a gauge transformation.

Problem: Show that, in ten-dimensions, with Γ11Λ = Λ,

Tr(Λ̄,Γm[(ε̄ΓmΛ),Λ]) = fabcΛ̄cΓ
m(ε̄ΓmΛa)Λb = 0. (7.55)
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You may assume the Fierz transformation in 10 dimensions is (why?)

(χ̄ψ)λ = − 1

32

[
(χ̄λ)ψ + (χ̄Γ11λ)Γ11ψ + (χ̄Γmλ)Γmψ − 1

2!
(χ̄Γmnλ)Γmnψ

−(χ̄ΓmΓ11λ)ΓmΓ11ψ −
1

3!
(χ̄Γmnpλ)Γmnpψ − 1

2!
(χ̄ΓmnΓ11λ)ΓmnΓ11ψ

+
1

4!
(χ̄Γmnpqλ)Γmnpqψ +

1

4!
(χ̄ΓmnpΓ11λ)ΓmnpΓ11ψ +

1

5!
(χ̄Γmnpqrλ)Γmnpqrψ

+
1

4!
(χ̄ΓmnpqΓ11λ)ΓmnpqΓ11ψ

]
(7.56)

Solution: We perform a Fierz transformation

fabcΛ̄cΓ
m(ε̄ΓmΛa)Λb = −fabcΛ̄cΓ

m(Λ̄aΓmε)Λb

=
1

32
fabcΛ̄c

∑
Γ

(
(Λ̄aΓΛb)Γ

mΓΓmε
)

(7.57)

Where the sum is over all the Γ’s that appear in the Fierz transformation. We note that
only terms which are anti-symmetric in a, b contribute and this corresponds to terms
where CΓ is symmetric. A little thinking shows that the options are

Γ = Γm,Γ11,Γmn,ΓmΓ11,Γmnpqr,ΓmnpqΓ11 (7.58)

In addition since Γ11Λ = Λ the only terms which survive are those for which [CΓ,Γ11] = 0
since if {CΓ,Γ11} = 0 then

Λ̄aΓΛb = ΛT
aCΓΓ11Λb = −ΛT

aΓ11CΓΛb = −Λ̄aΓΛb (7.59)

and hence vanishes. This leaves us with

Γ = Γm,ΓmΓ11,Γmnpqr (7.60)

and so

fabcΛ̄cΓ
m(ε̄ΓmΛa)Λb =

1

32
fabcΛ̄c

(
(Λ̄aΓnΛb)Γ

mΓnΓmε (7.61)

+(Λ̄aΓnΓ11Λb)Γ
mΓnΓmΓ11ε+

1

5!
(Λ̄aΓnpqrsΛb)Γ

mΓnpqrsΓmε
)

=
1

32
fabcΛ̄c

∑
Γ

(
2(Λ̄aΓnΛb)Γ

mΓnΓmε+
1

5!
(Λ̄aΓnpqrsΛb)Γ

mΓnpqrsΓmε
)

No the second term vanishes because

ΓmΓnpqrsΓm = 0 (7.62)
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To see this note that, for any fixed values of n, p, q, r, s there are five values of m for which
{Γnpqrs,Γm} = 0 (namely m = n, p, q, r, s) and five values of m for which [Γnpqrs,Γm] = 0
(namely m 6= n, p, q, r, s). Hence we have

fabcΛ̄cΓ
m(ε̄ΓmΛa)Λb =

1

16
fabcΛ̄c(Λ̄aΓnΛb)Γ

mΓnΓmε

= − 8

16
fabcΛ̄c(Λ̄aΓnΛb)Γ

nε (7.63)

=
1

2
fabc(ε̄ΓnΛc)(Λ̄aΓ

nΛb)

However the left-hand-side is

fabc(ε̄ΓnΛa)(Λ̄cΓ
nΛb) = f cba(ε̄ΓnΛc)(Λ̄aΓ

nΛb) = −fabc(ε̄ΓnΛc)(Λ̄aΓ
nΛb) (7.64)

since fabc = −f cba. Thus we see that fabc(ε̄ΓnΛc)(Λ̄aΓ
nΛb) = 0.

Problem: Show that in ten-dimensions, with Γ11Λ = Λ, the transformations

δAm = iε̄ΓmΛ

δΛ = −1

2
FmnΓmnε . (7.65)

close on-shell on Λ.

Solution: We start by following the four-dimensional calculation:

[δ1, δ2]Λ = −1

2
δ1FmnΓmnε2 − (1↔ 2)

Now

δ1Fmn = ∂mδ1An − ∂nδ1Am − i[δ1Am, An]− i[Am, δ1An]

= Dnδ1An −Dnδ1Am (7.66)

Thus we find

[δ1, δ2]Λ = −Dmδ1AnΓmnε2 − (1↔ 2)

= −i(ε̄1ΓnDmΛ)Γmnε2 − (1↔ 2) (7.67)

Next we need to use the Fierz identity. As in the previous question we write

[δ1, δ2]Λ = +
i

32

∑
Γ

(ε̄1Γε2)ΓmnΓΓnDmΛ− (1↔ 2)

Again we only need the contributions that are anti-symmetric under 1 ↔ 2 and this
restricts to Γ = Γp,Γ11,Γpq,ΓpΓ11,Γpqrst,ΓpqrsΓ11. Furthermore the only non-zero terms
are when [CΓ,Γ11] = 0 and hence Γ = Γp,ΓpΓ11,Γpqrst. Thus

[δ1, δ2]Λ = +
i

16

(
(ε̄1Γpε2)ΓmnΓpΓnDmΛ− (ε̄1ΓpΓ11ε2)ΓmnΓpΓ11ΓnDmΛ

+
1

5!
(ε̄1Γpqrstε2)ΓmnΓpqrstΓnDmΛ

)
(7.68)
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Note the factor of 16 from anti-symmetry under 1↔ 2. Since Γ11ε2 = ε2 and Γ11Λ = Λ
we see the the first two terms are equal. Thus we have to compute two expressions.

ΓmnΓpΓn = (ΓmΓn + ηmn)(−ΓnΓp + 2δpn)

= −10ΓmΓp − ΓmΓp + 2ΓmΓp + 2ηmn (7.69)

= −9ΓmΓp + 2ηmn

= 9ΓpΓm − 16ηmn

and

ΓmnΓpqrstΓn = (ΓmΓn + ηmn)ΓpqrstΓn

= Γm(ΓnΓpqrstΓn) + ΓpqrstΓm (7.70)

= ΓpqrstΓm

Here we have used the previous result that ΓnΓpqrstΓn = 0 since for half the values of n
Γn commutes with Γpqrst whereas for the other half it anti-commutes. Thus we have

[δ1, δ2]Λ = −2i(ε̄1Γmε2)DmΛ +
9i

8
(ε̄1Γnε2)ΓnΓmDmΛ

+
i

5! · 16
(ε̄1Γpqrstε2)ΓpqrstΓmDmΛ (7.71)

Thus we indeed find
[δ1, δ2]Λ = +2i(ε̄2Γmε1)DmΛ (7.72)

when the Fermions are on-shell; ΓmDmΛ = 0.

Problem: Show that the ten-dimensional supersymmetry

δAm = iε̄ΓmΛ

δΛ = −1

2
FmnΓmnε . (7.73)

becomes

δAµ = iε̄IΓµλ
I

δφA = −ε̄Iγ5λJρ
IJ
A (7.74)

δλI = −1

2
Fµνγ

µνεI − γµγ5Dµφ
AρIJA εJ +

i

2
[φA, φB]ρJIABεI .

where ρJIAB = (ηJ)TρABη
I .

Solution: Setting m = µ in δAm gives

δAµ = i(ε̄I ⊗ (ηI)T )(γµ ⊗ 1)(λJ ⊗ ηJ)

= iε̄IγµλJ((ηI)T ⊗ ηJ) (7.75)

= iε̄Iγµλ
I
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Next we set m = A in δAm to find

δφA = i(ε̄I ⊗ (ηI)T )(γ5 ⊗ 1)(λJ ⊗ ηJ)

= iε̄Iγ5λJ((ηI)T ⊗ ηJ) (7.76)

= iε̄Iγ5λ
I

Finally we have δΛ = δλI ⊗ ηI . Since (ηI)TηJ = δIJ we can read off δλJ from

δλJ ⊗ 1 = (1⊗ (ηJ)T )δΛ (7.77)

Hence, recalling that FµA = DµφA, we see that

δλJ = (1⊗ (ηJ)T )
(
− 1

2
Fµν(γ

µν ⊗ 1)−DµφA(γµγ5 ⊗ ρA) +
i

2
[φA, φB](1⊗ ρAB)

)
εI ⊗ ηI

= −1

2
Fµνγ

µνεJ −DµφAγ
µγ5εI(η

J)TρAηI +
i

2
[φA, φB]εI(η

J)TρABηI (7.78)

= −1

2
Fµνγ

µνεJ −DµφAγ
µγ5ρ

JI
A εI +

i

2
[φA, φB]ρJIABεI

where ρJIAB = (ηJ)TρABη
I .

Problem: Using the fact that < M1,M2 >= Tr(M †
1M2) defines a complex inner prod-

uct, convince yourself that the set

1, γD+1, γµ, γµν , γµν5 (7.79)

where the number of spacetime indices is no bigger than D/2, is a basis for the space
of 2D/2 × 2D/2 matrices.

Solution: We denote a general element of this set by γΓ. Since γ†µ = γ0γµγ0 and

γ2
Γ = ±1 we see that γ†ΓγΓ = 1. Hence up to a constant (which is 2D/2, the dimension of

the representation) all these elements have unit length.
The key point is that, since γD+1 ∝ εµ1µ2µ3...γµ1µ2µ3..., one can always express any

γµ1µ2µ3...µn which has n > D/2 spacetime indices as proportional to γµ1µ2µ3...,µD/2−n ,
possibly including one factor of γD+1, which has no more than D/2 indices. Hence we
have that

γ†ΓγΓ′ =
∑
Γ′′
CΓ′′γΓ′′ (7.80)

where number of spacetime indices on any given γΓ matrix is no bigger than D/2. If we
take the trace, and use the fact that only the identity has a non-vanishing trace, then
we see that all the γΓ are orthogonal.

Finally we need to count the number of γ′Γs. If D is even the list is

1, γD+1, γµ, γµγD+1, γµν , γµνγD+1..., γµ1...µD/2 (7.81)
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(note that γµ1...µD/2 appears but γµ1...µD/2γD+1 will not) which contains

1 + 1 +D +D +
(
D
2

)
+
(
D
2

)
+ ...+

(
D
D/2

)
+ 0 =

D∑
k=0

(
D
k

)
= 2D (7.82)

elements. If D is odd then γD+1 = 1 and hence the list is

1, γµ, γµν , ... (7.83)

which has

1 +D +
(
D
2

)
+ ...+

(
D

(D − 1)/2

)
=

1

2

D∑
k=0

(
D
k

)
=

1

2
2D = 2D−1 (7.84)

elements. In either case this is the number of 2[D]/2 × 2[D]/2 matrices.

Problem: Show that in three dimensions the Fierz rearrangement is

(λ̄ψ)χα = −1

2
(λ̄χ)ψα −

1

2

(
λ̄γµχ

)
(γµψ)α (7.85)

Using this, show that in the special case that λ = χ one simply has

(λ̄ψ)λα = −1

2
(λ̄λ)ψα (7.86)

for Majorana spinors. Convince yourself that this is true by considering the explicit 3D
γ-matrices above and letting

λ =
(
λ1

λ2

)
, ψ =

(
ψ1

ψ2

)
(7.87)

What is the Fierz rearrangement in two dimensions (Hint: this last part should take
you very little time)?

Solution: In three dimensions the γ-matrix products are

1 , γµ , γµν , γµνλ (7.88)

However one has that γµνλ ∝ εµνλ1 and also that γµν ∝ εµνλγ
λ. Thus only 1 and γµ are

independent matrices. Indeed since there are four of these and they are 2× 2 matrices
this is the correct counting. Furthermore all of these matrices square to one, except for
γ0 which squares to minus one. Thus our discussion in the lectures tells us that

δβαδ
δ
γ =

1

2
(1) β

γ (1) δ
α +

1

2
(γµ) β

γ (γµ) δ
α (7.89)
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Note that the minus sign in γ2
0 is automatically taken care of by the minus sign involved

in raising the µ = 0 index. Thus we have

(λ̄ψ)χα = λ̄αψβχδδ
β
αδ

δ
γ

= −1

2
(λ̄χ)ψα −

1

2

(
λ̄γµχ

)
(γµψ)α (7.90)

where the minus sign is due to interchanging the order of ψ and χ.
For the case that λ = χ we note that, for a Majorana basis in three-dimensions,

(Cγµ)T = (γ0γµ)T = γTµ γ
T
0 = −γ0γµγ0γ0 = Cγµ (7.91)

Thus, since λα is anti-commuting and Cγµ is symmetric, we have λ̄γµλ = 0 and the
result follows.

Let us compute this in the explicit matrix representation:

γ0 =
(

0 1
−1 0

)
γ1 =

(
0 1
1 0

)
γ2 =

(
1 0
0 −1

)
(7.92)

We start with the right hand side:

λ̄λ = (λ1, λ2)
(

0 1
−1 0

)(
λ1

λ2

)
= λ1λ2 − λ2λ1 (7.93)

= 2λ1λ2

so

−1

2
(λ̄λ)ψ1 = −λ1λ2ψ1 and − 1

2
(λ̄λ)ψ2 = −λ1λ2ψ2 (7.94)

Next look at the left hand side

λ̄ψ = (λ1, λ2)
(

0 1
−1 0

)(
ψ1

ψ2

)
= λ1ψ2 − λ2ψ1 (7.95)

Since λ2
α = 0 we find

(λ̄ψ)λ1 = (λ1ψ2 − λ2ψ1)λ1

= −λ2ψ1λ1 (7.96)

= −λ1λ2ψ1

48



similarly

(λ̄ψ)λ2 = (λ1ψ2 − λ2ψ1)λ2

= λ1ψ2λ2 (7.97)

= −λ1λ2ψ2

and thats what we had to show.
To find the Fierz rearrangement in two dimensions we note that the two-dimensional

Clifford algebra is essentially the same as the three-dimensional Clifford algebra, only
now γ2 is called γ3 and treated as a chirality matrix (and not one of that γµ). All this
just amounts to separating out γ2 for the others and calling it γ3. This leads to

(λ̄ψ)χα = −1

2
(λ̄χ)ψα −

1

2

(
λ̄γµχ

)
(γµψ)α −

1

2

(
λ̄γ3χ

)
(γ3ψ)α (7.98)

where now µ = 0, 1.
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